王家禮 教授
研究室:理A406
電話:03-8903515 傳真: 03-8900161
E-mail:cwang@mail.ndhu.edu.tw
個人網頁:
學歷:
美國加州大學柏克萊校區作業研究博士
經歷:
研究領域:
作業研究、排隊理論
論文:
1.C-L. Wang, 2016, Some Recent Advances in Stochastic Simulation,Chinese Journal of Applied Probability and Statistics, 32,221 - 260. (CSCI)
2.C-L. Wang, 2016, On Socially Optimal Queue Length, Management Science, 62, 899-903. (SSCI)
3.W-Y. Lee, C-L. Wang, 2013, Conditional Sojourn Times of Processor-Sharing Queues, Probability in the Engineering and Informational Sciences, 27, 99-114, (SCI)
4. C-L. Wang, R. W. Wolff, 2009, Loss Probability Properties in Retrial Queues, Operations Research Letters, 37, 47-50. (SCI)
5.C-L. Wang, R. W. Wolff, 2005, Work-Conserving Tandem Queues, Queueing System, 49,283-296.(SCI)
6.C-L. Wang, R. W. Wolff, 2005, New Estimators for Efficient GI/G/1 Simulation, Probability in the Engineering and Information Sciences, 19, 221-241. (SCI)
7.C-L. Wang, R. W. Wolff, 2003, Efficient Simulation for Queues in Heavy Traffic, ACM TOMACS, 19, 62-81. (SCI)
8.R. W. Wolff, C.-L. Wang, 2003, Idle Period Approximations and Bounds for the GI/G/1 Queue, Advances in Applied probability, 35, 773-792.(SCI)
9.R. W. Wolff, C.-L. Wang, 2002, On the Convexity of Erlang Loss Probabilities, Journal of Applied Probability, 39, 402-406.(SCI)
10.C.-L. Wang, 2002, An Identity of the GI/G/1 Transient Delay and Its Applications, Probability in the Engineering and Informational Sciences, 15, 17-34.(SCI)
11.C.-L. Wang, 1999, On the Transient Delays of M/G/1 Queues, Journal of Applied Probability, 36, 882-893.(SCI)
12.C.-L. Wang, R. W. Wolff, 1998, The M/G/c Queue in Light Traffic, Queueing Systems, 29, 17-34.(SCI)
13.C.-L. Wang, 1997, Light Traffic Approximations for Regenerative Queueing Processes, Advances in Applied probability, 29, 1060-1080.(SCI)
14.S. Asmussen, C.-L. Wang, 1996, Variance Reduction for Simulating Transient GI/G/1 Behavior, Probability in the Engineering and Informational Sciences, 10, 197-205.(SCI)
15.S. Asmussen, R.Y. Rubinstein and C.-L. Wang, 1994, Estimating Rare Events via Likelihood Ratios, Journal of Applied Probability, 31,797-815.(SCI)