跳到主要內容區
發佈日期 : 2010-06-27 最後更新日期 : 2024-09-08

曾玉玲 副教授

研究室:理A409

電話:03-8903518  傳真: 03-8900161

E-mail:yltseng@mail.ndhu.edu.tw

個人網頁:http://faculty.ndhu.edu.tw/~yltseng/edu.html

學歷:
  美國康乃爾大學統計博士

經歷:
  

研究領域:
  數理統計、集合估計論、擬經驗貝氏方法

論文:      

  1. C. Andy Tsao and Yu-Ling Tseng (2010). Power estimation for testing normal means.Statistics. (SCI)
     
  2. Yu-Ling Tseng and Shao-Wei Wu (July, 2007). Ranked-set-sample-based tests for normal and exponential means. Communication in Statistics: Simulation and Computation. Vol. 36, Issue 4, pp761-782. (SCI)
     
  3. C. Andy Tsao and Yu-Ling Tseng (SEP 2006). Confidence estimation for tolerance intervals. The Annals of the Institute of Statistical Mathematics. Vol.58(3),pp 441-456(SCI)
     
  4. Ling-Lien Su and Yu-Ling Tseng (June, 2006). Simulated comparison on some predictors for binary sequences: to randomize or not to randomize? Journal of the Chinese Statistical Association. (EconLit, CIS)
     
  5. C. Andy Tsao and Yu-Ling Tseng (JUN 2004). A statistical treatment of the problem of division. Metrika 59(3), pp. 289-303. (SCI)
     
  6. Yu-Ling Tseng (MAR 2004). Set-induced minimax estimator for a multivariate normal mean. Journal of Statistical Planning and Inference. Vol. 121, Issue 1, pp. 53-64. (SCI)
     
  7. Shao-Wei Wu and Yu-Ling Tseng (2003). Best linear unbiased estimators for the simple linear regression model with median-ranked-set-samples. Journal of the Chinese Statistical Association. Vol. 41, pp. 387-400.(CIS)
     
  8. Yu-Ling Tseng (2002). Optimal confidence sets for testing average bioequivalence. Test. Vol. 11, No. 1, pp. 127-141. (SCI)
     
  9. Meng-Fa Wang and Yu-Ling Tseng (2002). Ranked-set-sample based better tests for a normal mean. Journal of the Chinese Statistical Association. Vol.40, pp.391-418.(CIS)


研討會論文:
 

  1. Yu-Ling Tseng and Y. S. Fong (2012) Better tests for the correlation coefficient of a bivariate normal distribution. 8th World Congress in Probability and Statistics by Bernoulli Society and IMS, July 9 ~ July 14, Istanbul, Turkey.
     
  2. Yu-Ling Tseng and Chein-Chih Liao (2009). Some interval estimators and powerful unbiased tests under skew-normal model. The 1st IMS-APRM: June 28~July1, Seoul, Korea.
     
  3. Yu-Ling Tseng and Chein-Chih Liao (2008). The Robustness of Confidence Intervals for Normal Mean against Skew Normality. IASC2008: December 5~8, Yokohama, Japan.
     
  4. C. H. Andy Tsao and Yu-Ling Tseng (2007). Power estimation for testing normal means. ISI 2007, Lisbon, Portugal. Aug. 22 ~ Aug. 29, 2007.
     
  5. C. H. Andy Tsao and Yu-Ling Tseng (2006). Confidence estimation for tolerance intervals. CompStat 2006, Rome, Italy. Aug. 26 ~ Sep. 1, 2006.
     
  6. Ya-Yuan Lian and Yu-Ling Tseng (2006). Recentered confidence sets for multivariate normal means. 南區統計暨機率統計學會年會學術研討會,嘉義中正大學。
     
  7. Yi-Fen Chi and Yu-Ling Tseng (2005). Boosting for predicting sequential binary data. 南區統計暨機率統計學會年會學術研討會,台南成功大學。
     
  8. Yu-Ling Tseng (2003). On some aspects of setting tolerance limits. 南區統計暨機率統計學會年會學術研討會,高雄中山大學。
 


技術報告其它:

1.Tseng, Yu-Ling(1997) Confidence Intervals Improving unop the Usual t-Interval, 1997年,國科會計畫編號:NSC-86-2115-M-001-024

2.Tseng, Yu-Ling(1997) Improved Unbiased Bioequivalence tests., 1997年

3.Tseng, Yu-Ling(1997) Optimal Confidence Sets for Bioequivalence Testing Problems. Submitted., 1997年,國科會計畫編號:NSC-84-2121-M-001-031

4.Tseng, Yu-Ling(1996) Better Confidence Sets for Small Area Estimation Problems., 1996年

5.Levine, Richard, Tsao, Chen-Hai and Tseng, Yu-Ling Assessing the Effects of Low-Level Lead Exposure.Technical Report, Biometric unit, Cornell University, Ithaca,New York., 1995年

6.Tseng, Yu-Ling and brown, L.D(1995) Good Exact Confidence Sets for the Mean Vector of a Multivariate Normal Distribution. Technical Report C-96-9, Institute of Statistical science, Academia Sinica, Taipei., 1995年

研究室編號: 理A409
職稱: 副教授
電話: 03-8903518
導師時間: MON & THU 12:10-13:00
導師姓名: 曾玉玲(Yu-Ling Tseng)
教師姓名: 曾玉玲(Yu-Ling Tseng)
研究領域: 數理統計、集合估計論、擬經驗貝氏方法
OfficeHour: TUE 12:10-13:00;THU 15:10-16:00
班別: 大一:統計科學組
瀏覽數: