1.5 Concept Questions

1. a.
$$m_{\text{sec}} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{f(2+h) - f(2)}{h}$$

b.
$$m_{\tan} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

2. a.
$$r_{\text{av}} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{f(2+h) - f(2)}{h}$$

b.
$$r_{\text{inst}} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

c. They are the same

10. a.
$$m_{\text{sec}} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{\left[(2+h)^2 - (2+h)\right] - \left(2^2 - 2\right)}{h} = \frac{h^2 + 3h}{h} = 3 + h$$

b.
$$m_{\tan} = \lim_{h \to 0} \frac{f(2+h) - f(2)}{(2+h) - 2} = \lim_{h \to 0} (3+h) = 3$$

c.
$$y - 2 = 3(x - 2) \Rightarrow y = 3x - 4$$

14. a.
$$m_{\text{sec}} = \frac{f(1+h) - f(1)}{(1+h) - 1} = \frac{\frac{1}{(1+h) + 1} - \frac{1}{1+1}}{(1+h) - 1} = \frac{2 - (2+h)}{2h(2+h)} = \frac{-h}{2h(2+h)} = -\frac{1}{2(2+h)}$$

b.
$$m_{\tan} = \lim_{h \to 0} \frac{f(1+h) - f(1)}{(1+h) - 1} = \lim_{h \to 0} \left[-\frac{1}{2(2+h)} \right] = -\frac{1}{4}$$

c.
$$y - \frac{1}{2} = -\frac{1}{4}(x - 1) \Rightarrow y = -\frac{1}{4}x + \frac{2}{4}$$

16.
$$\lim_{h \to 0} \frac{g(-1+h) - g(-1)}{(-1+h) - (-1)} = \lim_{h \to 0} \frac{\left[(-1+h)^2 - (-1+h) + 2 \right] - \left[(-1)^2 - (-1) + 2 \right]}{h}$$
$$= \lim_{h \to 0} \frac{h^2 - 2h + 1 - h + 1 + 2 - 4}{h} = \lim_{h \to 0} \frac{h(h-3)}{h} = -3$$

18.
$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{(4+h) - 4} = \lim_{h \to 0} \frac{\sqrt{4+h} - \sqrt{4}}{h} = \lim_{h \to 0} \frac{\left(\sqrt{4+h} - 2\right)\left(\sqrt{4+h} + 2\right)}{h\left(\sqrt{4+h} + 2\right)} = \lim_{h \to 0} \frac{h}{h\left(\sqrt{4+h} + 2\right)} = \frac{1}{4}$$

20.
$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{(1+h) - 1} = \lim_{h \to 0} \frac{\frac{1}{(1+h) - 2} - \frac{1}{1-2}}{h} = \lim_{h \to 0} \frac{\frac{1}{h-1} + 1}{h} = \lim_{h \to 0} \frac{1+h-1}{h(h-1)} = -1$$

- **36.** Using the definition of the derivative, we find $f(x) = 2x^{1/4}$ and a = 16.
- **38.** Using the definition of the derivative, we find $f(x) = 2^x$ and a = 3.
- **40.** Using the definition of the derivative with $h = x \frac{\pi}{2}$, we find $f(x) = \sin x$ and $a = \frac{\pi}{2}$.

- **41.** True. The slope of the secant line passing through (a, f(a)) and (b, f(b)) is $m = \frac{f(b) f(a)}{b a}$. By definition, the average rate of change of f(x) over [a, b] is $r_{av} = \frac{f(b) f(a)}{b a}$.
- 42. True. Consider the function f(x) = mx + b whose graph is a straight line. Since the tangent line to the graph of f at any point is the line itself, the tangent line intersects the graph of f at infinitely many points.
- **43.** False. If the tangent line exists at a point $(x_0, f(x_0))$, then $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ exists and must be unique.
- **44.** True. The slope of the tangent line to the graph of f(x) at x = a is given by $\lim_{h \to 0} \frac{f(a+h) f(a)}{h}$. Put x = a + h. Then h = x a, and since $x \to a$ as $h \to 0$, $\lim_{h \to 0} \frac{f(a+h) f(a)}{h} = \lim_{x \to a} \frac{f(x) f(a)}{x a}$.

Chapter 1 Review

Concept Review

- **1. a.** L, f, L, a **b.** right **c.** exist, L **d.** $\varepsilon > 0$, $\delta > 0$
- **2. a.** $\lim_{x \to a} [f(x) \pm g(x)] = L \pm M$, $\lim_{x \to a} [f(x)g(x)] = LM$, $\lim_{x \to a} [cf(x)] = cL$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$, $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$
 - **b.** *p* (*a*)
 - $\mathbf{c.} \ r(x)$
- 3. $\lim_{x \to a} g(x) = L$
- **4. a.** continuous **b.** removable **c.** jump **d.** left
- 5. a. $(-\infty, \infty)$ b. its domain c. continuous
- **6. a.** [a, b], f(c) = M **b.** f(x) = 0, (a, b)
- 7. **a.** $m_{\tan} = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ **b.** $y f(a) = m_{\tan}(x a)$
- **8. a.** $\frac{f(a+h) f(a)}{h}$ **b.** $\lim_{h \to 0} \frac{f(a+h) f(a)}{h}$

2.1 Concept Questions

- **1. a. i.** It gives the slope of the secant line passing through the points (x, f(x)) and (x + h, f(x + h)).
 - ii. It gives the average rate of change of f over the interval [x, x + h].
 - **b.** i. It gives the slope of the tangent line to the graph of f at the point (x, f(x)).
 - ii. It gives the instantaneous rate of change of f at x.
- 2. Loosely speaking, a function f does not have a derivative at a if the graph of f does not have a tangent line at a, or if it has a vertical tangent line at a. The function whose graph is shown in the figure fails to be differentiable at x = a, b, and c because it is discontinuous at each of these numbers. The derivative of the function does not exist at x = d, e and f because it has a kink at each point on the graph corresponding to these numbers. Finally, the function is not differentiable at x = g because the tangent line is vertical at (g, f (g)).

4.
$$f(x) = 2x^2 + x \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left[2(x+h)^2 + (x+h)\right] - \left(2x^2 + x\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(2x^2 + 4xh + 2h^2 + x + h\right) - \left(2x^2 + x\right)}{h} = \lim_{h \to 0} \frac{4xh + 2h^2 + h}{h} = \lim_{h \to 0} \frac{h(4x + 2h + 1)}{h}$$

$$= \lim_{h \to 0} (4x + 2h + 1) = 4x + 1 \text{ with domain } (-\infty, \infty).$$

8.
$$f(x) = 2\sqrt{x} \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2\sqrt{x+h} - 2\sqrt{x}}{h} = 2\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$
$$= 2\lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = 2\lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})} = 2\lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{2}{2\sqrt{x}}$$
$$= \frac{1}{\sqrt{x}} \text{ with domain } (0, \infty).$$

10.
$$f(x) = \frac{1}{x} \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h}$$
$$= \lim_{h \to 0} \frac{-h}{hx(x+h)} = -\lim_{h \to 0} \frac{1}{x(x+h)} = -\frac{1}{x^2} \text{ with domain } (-\infty, 0) \cup (0, \infty).$$

12.
$$f(x) = -\frac{2}{\sqrt{x}} \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{-\frac{2}{\sqrt{x+h}} - \left(-\frac{2}{\sqrt{x}}\right)}{h} = 2 \lim_{h \to 0} \frac{\frac{-\sqrt{x} + \sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}}{h}$$

$$= 2 \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h\sqrt{x}\sqrt{x+h}} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = 2 \lim_{h \to 0} \frac{(x+h) - x}{h\sqrt{x}\sqrt{x+h}(\sqrt{x+h} + \sqrt{x})}$$

$$= 2 \lim_{h \to 0} \frac{h}{h\sqrt{x}\sqrt{x+h}(\sqrt{x+h} + \sqrt{x})} = 2 \lim_{h \to 0} \frac{1}{\sqrt{x}\sqrt{x+h}(\sqrt{x+h} + \sqrt{x})} = \frac{2}{\sqrt{x}\sqrt{x}(2\sqrt{x})}$$

$$= \frac{1}{x\sqrt{x}} \text{ with domain } (0, \infty).$$

16.
$$f(x) = 3x^2 - 4x + 2 \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\left[3(x+h)^2 - 4(x+h) + 2\right] - \left(3x^2 - 4x + 2\right)}{h}$$

$$= \lim_{h \to 0} \frac{\left(3x^2 + 6xh + 3h^2 - 4x - 4h + 2\right) - \left(3x^2 - 4x + 2\right)}{h} = \lim_{h \to 0} \frac{h(6x + 3h - 4)}{h}$$

$$= \lim_{h \to 0} (6x + 3h - 4) = 6x - 4$$

The slope of the tangent line at (2, 6) is f'(2) = 6(2) - 4 = 8. An equation of the tangent line is y - 6 = 8(x - 2) or y = 8x - 10.

20.
$$f(x) = \frac{2}{x} \implies$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{2}{x+h} - \frac{2}{x}}{h} = 2\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = 2\lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h}$$
$$= 2\lim_{h \to 0} \frac{-h}{hx(x+h)} = -2\lim_{h \to 0} \frac{1}{x(x+h)} = -\frac{2}{x^2}$$

The slope of the tangent line at (2, 1) is $f'(2) = -\frac{2}{4} = -\frac{1}{2}$. An equation of the tangent line is $y - 1 = -\frac{1}{2}(x - 2)$ or $y = -\frac{1}{2}x + 2$.

- **44.** *f* is not differentiable at 1 because *f* is not continuous at 1.
- **46.** f is not differentiable at 2 because the graph of f has a kink at the point (2, 0).
- **48.** f is not differentiable at -2 because f is not continuous there. f also fails to be differentiable at 0 and 1, because the graph of f has kinks at the points (0,3) and (1,4).
- **50.** $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+1) = 1$, $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(x^{2} + 1\right) = 1$. Therefore, $\lim_{x \to 0} f(x) = 1$. Also, f(0) = 0 + 1 = 1, and so $\lim_{x \to 0} f(x) = f(0)$. Therefore, f(0) = 0 + 1 = 1.

To show that f is not differentiable at 0, let h < 0 and consider

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{(h+1) - 1}{h} = \lim_{h \to 0^{-}} 1 = 1. \text{ Next, if } h > 0, \text{ then}$$

$$\lim_{h\to 0^+}\frac{f\left(0+h\right)-f\left(0\right)}{h}=\lim_{h\to 0^+}\frac{\left[\left(0+h\right)^2+1\right]-1}{h}=\lim_{h\to 0^+}h=0. \text{ This shows that }\lim_{h\to 0}\frac{f\left(0+h\right)-f\left(0\right)}{h}\text{ does not exist, and so by definition, }f\text{ is not differentiable at }0.$$

52. $f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ Because $|\sin(1/x)| \leq 1$, we have $0 \leq |x \sin(1/x)| \leq |x|$. Since $\lim_{x \to 0} |x| = 0$, the

Squeeze Theorem implies that $\lim_{x\to 0} x \sin(1/x) = 0 = f(0)$, and so f is continuous at 0.

To show that f is not differentiable at 0, we compute $f'(0) = \lim_{h \to 0} \frac{f'(0+h) - f'(0)}{h} = \lim_{h \to 0} \frac{h \sin(1/h)}{h} = \lim_{h \to 0} \sin(1/h)$ which does not exist. Therefore, f is not differentiable at 0.

58. a.

b. If $x \ge 0$, then $f(x) = x^2$, so

b. If
$$x \ge 0$$
, then $f(x) = x^2$, so
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{\left(x^2 + 2xh + h^2\right) - x^2}{h} = \lim_{h \to 0} (2x+h) = 2x$$
If $x < 0$, then $f(x) = -x^2$, and a similar calculation shows the following specific differentiable examples as $f'(x) = 2x$. So, f is differentiable examples as $f'(x) = 2x$. So, f is differentiable examples as $f'(x) = 2x$.

If x < 0, then $f(x) = -x^2$, and a similar calculation shows that f'(x) = -2x. So f is differentiable everywhere.

- $f(x) = x |x| = \begin{cases} -x^2 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$ **c.** From the results of part b, we see that $f'(x) = \begin{cases} -2x & \text{if } x < 0 \\ 2x & \text{if } x \ge 0 \end{cases}$
- **61. a.** $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \Rightarrow$

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin \frac{1}{h} - 0}{h} = \lim_{h \to 0} h \sin \frac{1}{h}.$$

Now $0 \le \left| h \sin \frac{1}{h} \right| \le |h|$, and the Squeeze Theorem implies that

 $\lim_{h\to 0} h \sin \frac{1}{h} = 0$. Therefore f is differentiable at 0 and f'(0) = 0.

- **65.** True. By definition, the slope of the tangent line to the graph of f at (3, f(3)) is given by $f'(3) = \lim_{h \to 0} \frac{f(3+h) f(3)}{h}$.
- **66.** False. The function f(x) = 0 is differentiable, and the function g(x) = |x| is not differentiable at 0. But the function h = fg defined by h(x) = f(x)g(x) = 0 is differentiable everywhere.
- **67.** False. The function f(x) = |x| is not differentiable at 0 (see Example 6). Taking f(x) = g(x) = |x|, we see that f and g are not differentiable at 0, but the product fg defined by $(fg)(x) = f(x)g(x) = |x||x| = x^2$ is differentiable at 0.
- **68.** False. The functions f(x) = |x| and g(x) = -|x| are not differentiable at 0, but f + g defined by (f + g)(x) = f(x) + g(x) = |x| |x| = 0 is differentiable at 0.
- **69.** False. Consider $f(x) = \sqrt{x}$. The domain of f is $[0, \infty)$, but the domain of f' is $(0, \infty)$. (See Example 1.)
- **70.** True. One example is the function $f(x) = |x-1| + |x-2| + \cdots + |x-n|$.