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36. Using the definition of the derivative, we find f (x) = 2x!/ 4anda = 16.
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Using the definition of the derivative, we find f (x) = 2* anda = 3.

Using the definition of the derivative with # = x — 7, we find f (x) = sinx anda = 7.
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True. The slope of the secant line passing through (a, f (a)) and (b, f (b)) ism = M
—a
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average rate of change of f (x) over [a, b] is ray = b
—a

True. Consider the function f (x) = mx + b whose graph is a straight line. Since the tangent line to the graph of f at any

. By definition, the

point is the line itself, the tangent line intersects the graph of f at infinitely many points.
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False. If the tangent line exists at a point (xg, f (xg)), then hlimo exists and must be unique.
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w, Putx =a + h. Then

True. The slope of the tangent line to the graph of f (x) at x = a is given by hlimo
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shown in the figure fails to be differentiable at x = a, b, and

¢ because it is discontinuous at each of these numbers. The
derivative of the function does not exist at x = d, e and f //JIL

because it has a kink at each point on the graph corresponding
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to these numbers. Finally, the function is not differentiable at / a b ¢
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.1 Concept Questions

i. It gives the slope of the secant line passing through the points (x, f (x)) and (x + &, f (x + h)).
ii. It gives the average rate of change of f over the interval [x, x + A].

i. It gives the slope of the tangent line to the graph of f at the point (x, f (x)).
ii. It gives the instantaneous rate of change of f at x.

osely speaking, a function f does not have a derivative at

f the graph of f does not have a tangent line at a, or if it

U
|
has a vertical tangent line at a. The function whose graph is :
|
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x = g because the tangent line is vertical at (g, f (g)).
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The slope of the tangent line at (2, 6) is /7 (2) = 6 (2) — 4 = 8. An equation of the tangent lineis y — 6 = 8 (x — 2) or
y = 8x — 10.
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The slope of the tangent line at (2, 1) is /7 (2) = —% = —%. An equation of the tangent lineis y — 1 = —% (x —2)or

y:—%x+2.



44. f is not differentiable at 1 because " is not continuous at 1.

46. f is not differentiable at 2 because the graph of f has a kink at the point (2, 0).

48. f is not differentiable at —2 because f is not continuous there. f also fails to be differentiable at 0 and 1, because the graph
of f has kinks at the points (0, 3) and (1, 4).

50. lim f(x)= lim (x+1) =1, lim f(x)= lim <x2 + 1) — 1. Therefore, lim f (x) = 1. Also,
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f(0)=0+1=1,andso 1im0f(x) = £ (0). Therefore, f is continuous at 0.
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To show that f is not differentiable at 0, let # < 0 and consider
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exist, and so by definition, f is not differentiable at 0.
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which does not exist. Therefore, f is not differentiable at 0.
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Now 0 < ‘h sin H < |h|, and the Squeeze Theorem implies that

. 1 .. . y B
hlgno hsin 7 = 0. Therefore f is differentiable at 0 and f” (0) = 0.
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False. The function f (x) = 0 is differentiable, and the function g (x) = |x| is not differentiable at 0. But the function

h = fg defined by / (x) = f (x) g (x) = 0 is differentiable everywhere.

False. The function f (x) = |x| is not differentiable at 0 (see Example 6). Taking f (x) = g (x) = |x|, we see that f and g

are not differentiable at 0, but the product fg defined by (fg) (x) = f (x) g (x) = |x| |x| = x2 is differentiable at 0.

False. The functions f (x) = |x| and g (x) = — |x| are not differentiable at 0, but f/ + g defined by

(f+2) x) = f (x) + g (x) = |x] — |x| = 0 is differentiable at 0.

False. Consider f (x) = +/x. The domain of f is [0, 00), but the domain of f” is (0, 00). (See Example 1.)

True. One example is the function f (x) =[x — 1|+ |x = 2|+ -+ + |x — n].

True. By definition, the slope of the tangent line to the graph of f at (3, £ (3)) is given by f” (3) = hlimo
%



