考試注意事項:

- 1. 答案紙直行對折,兩直攔書寫作答。
- 2. 無清楚計算過程,不予計分。

試題:

- 1. (15%) Find the radius of convergence and the interval of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n}$.
- 2. (15%) Find a power series representation for $\frac{1}{(1+x)^2}$ on (-1,1) by differentiating a power series of $f(x) = -\frac{1}{1+x}$.
- 3. (15%) Find the Maclaurin series of $f(x) = \sin x$, and determine its interval of convergence.
- 4. (15%) Let $f(x) = \ln x$
 - (a) Find the fourth-degree Taylor polynomial $P_4(x)$ of f at c=1.
 - (b) Let $R_4(x) = f(x) P_4(x)$. Estimate the accuracy $R_4(1.1)$ of the approximation that you obtain in part (a).
- 5. $(10\% \times 4)$ Determine whether the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{3n^2 - 1}$$

(b)
$$\sum_{n=1}^{\infty} n^{-1.001}$$

$$(c) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n}{4n^2 - 1}$$