1. (15%) Find the derivative of the function $f(x) = 2x^3 + x$ from definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

2. (15%) Let

$$f(x) = \begin{cases} x^2 & \text{if } x \le a \\ Ax + B & \text{if } x > a \end{cases}$$

Find the values of A and B such that f is continuous and differentiable at a.

- 3. (15%) Find the second derivative of the function $h(t) = (t^2 + 1) \sin t$.
- 4. (15%) Find $\frac{dy}{dx}$ and equation of the tangent line to the curve $x + \sqrt{xy} + y = 6$ at the point (2,2).
- 5. Find the indicated limit if it exists.
 - (a) (5%) $\lim_{x\to 4} \frac{x-4}{\sqrt{x-2}}$
 - (b) (5%) $\lim_{x\to 3} \sqrt{x^2 + 2x 3}$
- 6. (10%) Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find h'(1) if

$$h(x) = \frac{f(x)g(x)}{f(x) - g(x)}.$$

- 7. (10%) Find the linearization of a suitable function, and then use it to approximate the number $\sqrt{63.8}$.
- 8. Find $\frac{dy}{dx}$ if
 - (a) (5%) $y = (x^2 + 1)^{120}$,
 - (b) (5%) $y = \sqrt{2x^2 1}$.