13.7 Tangent Planes and Normal Lines

6. $F(x,y) = x^4 - x^2 + y^2 \Rightarrow \nabla F\left(\frac{1}{2}, \frac{\sqrt{3}}{4}\right) = \left[\left(4x^3 - 2x\right)\mathbf{i} + 2y\mathbf{j}\right]_{\left(\frac{1}{2}, \sqrt{3}/4\right)} = -\frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j}$ is normal to the level $\mathbf{j} = \frac{1}{2}\mathbf{j} + \frac{\sqrt{3}}{2}\mathbf{j}$ curve $F(x,y)=x^4-x^2+y^2=0$ at $\left(\frac{1}{2},\frac{\sqrt{3}}{4}\right)$. So the slope of the required normal line is $m=\frac{\sqrt{3}/2}{-1/2}=-\sqrt{3}$ and an equation of the normal line is $y - \frac{\sqrt{3}}{4} = -\sqrt{3}\left(x - \frac{1}{2}\right) \Leftrightarrow y = -\sqrt{3}x + \frac{3\sqrt{3}}{4}$. The slope of the required tangent line is $m = -\frac{1}{-\sqrt{3}} = \frac{\sqrt{3}}{3}$, and so an equation of the tangent line is $y - \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{3} \left(x - \frac{1}{2}\right) \Leftrightarrow y = \frac{\sqrt{3}}{3}x + \frac{\sqrt{3}}{12}$

13.
$$F(1,3,2) = \left(-x^2 + y^2 - z^2\right)\Big|_{(1,3,2)} = -1 + 9 - 4 = 4,$$
 $\nabla F(1,3,2) = (-2x\mathbf{i} + 2y\mathbf{j} - 2z\mathbf{k})|_{(1,3,2)}$ so an equation of the required level surface is $= -2\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}$.

$$-x^{2} + y^{2} - z^{2} = 4 \Leftrightarrow \frac{y^{2}}{2^{2}} - \frac{x^{2}}{2^{2}} - \frac{z^{2}}{2^{2}} = 1.$$

$$\nabla F (1, 3, 2) = (-2x\mathbf{i} + 2y\mathbf{j} - 2z\mathbf{k})|_{(1,3,2)}$$

$$= -2\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}.$$

20. $F(x,y,z) = xyz + 4 = 0 \Rightarrow \nabla F(2,-1,2) = (yz\mathbf{i} + xz\mathbf{j} + xyk)|_{(2,-1,2)} = -2\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} = -2(\mathbf{i} - 2\mathbf{j} + \mathbf{k}), \text{ so an equation of the tangent plane at } (2,-1,2) \text{ is } (x-2) - 2(y+1) + (z-2) = 0 \Leftrightarrow x-2y+z = 6.$ Equations of the normal line passing through (2,-1,2) are $\frac{x-2}{1} = \frac{y+1}{1} = \frac{z-2}{1} \Leftrightarrow x-2 = \frac{y+1}{-2} = z-2.$

33.
$$F(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 \Rightarrow \nabla F(x_0,y_0,z_0) = \left(\frac{2x}{a^2}\mathbf{i} + \frac{2y}{b^2}\mathbf{j} + \frac{zz}{c^2}\mathbf{k}\right)\Big|_{(x_0,y_0,z_0)} = \frac{2x_0}{a^2}\mathbf{i} + \frac{2y_0}{b^2}\mathbf{j} + \frac{2z_0}{b^2}\mathbf{k},$$
 so an equation of the tangent plane at (x_0,y_0,z_0) is $\frac{2x_0}{a^2}(x-x_0) + \frac{2y_0}{b^2}(y-y_0) + \frac{2z_0}{c^2}(z-z_0) = 0 \Leftrightarrow \frac{x_0x}{a^2} + \frac{y_0y}{b^2} + \frac{z_0z}{c^2} - \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} + \frac{z_0^2}{b^2}\right) = 0.$ But (x_0,y_0,z_0) lies on the ellipsoid, so the expression in parentheses is equal to 1 and we have $\frac{xx_0}{b^2} + \frac{y_0}{b^2} + \frac{z_0}{b^2} + \frac{z_0}{b^2} = 1$, as was to be shown.

13.8 Extrema of Functions of Two Variables

8. $\begin{cases} f_X(x,y) = \frac{2}{6\pi} \left(x^2 + 3y^2 - 6xy - 2x + 4y\right) = 2x - 6y - 2 = 0 \\ f_Y(x,y) = \frac{2}{6\pi} \left(x^2 + 3y^2 - 6xy - 2x + 4y\right) = 6y - 6x + 4 = 0 \end{cases} \\ \Rightarrow x = \frac{1}{2}, y = -\frac{1}{6}, \text{ so } \left(\frac{1}{2}, -\frac{1}{6}\right) \text{ is the sole critical }$ point of f. Next, $D(x, y) = f_{xx}(x, y) f_{yy}(x, y) - f_{xy}^2(x, y) = 2 \cdot 6 - (-6)^2 = -24$. Since $D\left(\frac{1}{2}, -\frac{1}{6}\right) = -24 < 0$, we conclude that $(\frac{1}{2}, -\frac{1}{6}, -\frac{5}{6})$ is a saddle point of f.

13.
$$f_X(x,y) = \frac{\varepsilon}{\varepsilon_T} \left(x^2 - 6x - x\sqrt{y} + y \right) = 2x - 6 - \sqrt{y} = 0$$
 From the first equation, we see that
$$f_Y(x,y) = \frac{\varepsilon}{\varepsilon_T} \left(x^2 - 6x - xy^{1/2} + y \right) = -\frac{x}{2\sqrt{y}} + 1 = 0$$
 From the first equation, we see that
$$\sqrt{y} = 2x - 6.$$
 Substituting this into the scond equation gives
$$-x + 2(2x - 6) = 0 \Rightarrow x = 4.$$
 Substituting this into the first equation gives
$$8 - 6 = \sqrt{y} \Rightarrow y = 4,$$
 so the sole critical point of f is $(4, 4)$. Next,

$$D(x,y) = f_{xx}(x,y) f_{yy}(x,y) - f_{xy}^2(x,y) = 2\left(\frac{x}{4y^{3/2}}\right) - \left(-\frac{1}{2\sqrt{y}}\right)^2 = \frac{x}{2y^{3/2}} - \frac{1}{4y}.$$
 Since

 $D(4,4) = \frac{4}{2(8)} - \frac{1}{4(4)} = \frac{3}{16} > 0$ and $f_{xx}(4,4) = 2 > 0$, the point (4, 4) gives a relative minimum of f with value f(4,4) = -12.

$$\begin{cases} f_x\left(x,y\right) = \frac{\partial}{\partial x} \left(xy - \frac{2}{x} - \frac{4}{y}\right) = y + \frac{2}{x^2} = \frac{x^2y + 2}{x^2} = 0 \\ f_y\left(x,y\right) = \frac{\partial}{\partial y} \left(xy - \frac{2}{x} - \frac{4}{y}\right) = \frac{xy^2 + 2}{y^2} = 0 \end{cases} \Rightarrow \begin{cases} x^2y + 2 = 0 \\ xy^2 + 4 = 0 \end{cases}$$
 From the first equation,

 $y = -\frac{2}{x^2}$, and substituting this into the second equation yields $x\left(-\frac{2}{x^2}\right)^2 + 4 = 0 \Leftrightarrow 4\left(1 + x^3\right) = 0 \Rightarrow x = -1$.

Substituting into the first equation gives y = -2, so (-1, -2) is the only critical point of f. Next, $f_{xx}(x, y) = -\frac{4}{x^2}$. $f_{xy}(x,y) = 1$, and $f_{yy}(x,y) = -\frac{8}{y^3}$, so $D(x,y) = f_{xx}(x,y) f_{yy}(x,y) - f_{xy}^2(x,y) = \frac{3}{x^3y^3} - 1$. Since D(-1,-2) = 3 > 0 and $f_{xx}(-1,-2) = 4 > 0$, the point (-1,-2) gives a relative minimum of f with value $f(-1,-2) = (-1)(-2) - \frac{4}{-2} = 6$.

33. Since $f_x(x, y) = \frac{c}{\partial x}(2x + 3y - 6) = 2$ and

 $f_y\left(x,y\right)=\frac{\partial}{\partial y}\left(2x+3y-6\right)=3$ are never equal to 0, f has no critical point on D.

On
$$\ell_1$$
, $x = 2$ and $y = y$, so $g(y) = f(2, y) = 3y - 2$ for $-2 \le y \le 3$.

We see that g has an absolute minimum value of -8 at (2, -2) and an

absolute maximum value of 7 at (2, 3).

On ℓ_2 , x = x and y = 3, so h(x) = f(x, 3) = 2x + 3 for $0 \le x \le 2$. We see that h has an absolute minimum value of 3 at

(0, 3) and an absolute maximum value of 7 at (2, 3). On ℓ_3 , x = 0 and y = y, so s(y) = f(0, y) = 3y - 6 for $-2 \le y \le 3$. We see that s has an absolute minimum value of -12 at (0, -2) and an absolute maximum value of 3 at (0, 3).

The extreme values of f on each boundary of D are summarized below.

(x, y)	ℓ_1		ℓ_2		ℓ_3		ℓ_4	
	(2, -2)	(2, 3)	(0, 3)	(2, 3)	(0, -2)	(0, 3)	(0, -2)	(2, -2)
Extreme value	-8	7	3	7	-12	3	-12	-8

We see that f has an absolute minimum value of f(0, -2) = -12 and an absolute maximum value of f(2, 3) = 7 on D.