13. $I=\int \frac{(x-1) d x}{x^{2}-x-2}$. Now $\frac{x-1}{x^{2}-x-2}=\frac{x-1}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}=\frac{(A+B) x+A-2 B}{(x-2)(x+1)}$ $\Rightarrow A+B=1$ and $A-2 B=-1 \Rightarrow B=\frac{2}{3}$ and $A=\frac{1}{3}$, so $I=\frac{1}{3} \int \frac{d x}{x-2}+\frac{2}{3} \int \frac{d x}{x+1}=\frac{1}{3} \ln |x-2|+\frac{2}{3} \ln |x+1|+C=\frac{1}{3} \ln \left|(x-2)(x+1)^{2}\right|+C$.
14. $I=\int \frac{v^{3}+1}{v(v-1)^{3}} d v$. Now

$$
\begin{aligned}
\frac{v^{3}+1}{v(v-1)^{3}} & =\frac{A}{v}+\frac{B}{v-1}+\frac{C}{(v-1)^{2}}+\frac{D}{(v-1)^{3}}=\frac{A(v-1)^{3}+B v(v-1)^{2}+C v(v-1)+D v}{v(v-1)^{3}} \\
& =\frac{A\left(v^{3}-3 v^{2}+3 v-1\right)+B\left(v^{3}-2 v^{2}+v\right)+C\left(v^{2}-v\right)+D v}{v(v-1)^{3}} \\
& =\frac{(A+B) v^{3}-(3 A+2 B-C) v^{2}+(3 A+B-C+D) v-A}{v(v-1)^{3}}
\end{aligned}
$$

$\Rightarrow A+B=1,3 A+2 B-C=0,3 A+B-C+D=0$, and $-A=1$. We find $A=-1, B=2$, $C=3 A+2 B=-3+4=1$, and $D=-3 A-B+C=3-2+1=2$. Therefore,

$$
\begin{aligned}
I & =\int\left[\frac{-1}{v}+\frac{2}{v-1}+\frac{1}{(v-1)^{2}}+\frac{2}{(v-1)^{3}}\right] d v=-\ln |v|+2 \ln |v-1|-\frac{1}{v-1}-\frac{1}{(v-1)^{2}}+C \\
& =\ln \left|\frac{(v-1)^{2}}{v}\right|-\frac{v}{(v-1)^{2}}+C
\end{aligned}
$$

31. $I=\int \frac{x^{3}+3}{(x+1)\left(x^{2}+1\right)} d x=\int\left[1-\frac{x^{2}+x-2}{(x+1)\left(x^{2}+1\right)}\right] d x=x-J$, where $J=\int \frac{x^{2}+x-2}{(x+1)\left(x^{2}+1\right)} d x$. Now

$$
\begin{aligned}
x^{3}+x^{2}+x+1 & \begin{array}{l}
1 \\
\begin{array}{l}
x^{3} \\
-x^{2}-x+2
\end{array} \\
\frac{x^{3}+x^{2}+x+1}{-x^{2}}
\end{array}
\end{aligned}
$$

$\frac{x^{2}+x-2}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$

$$
=\frac{(A+B) x^{2}+(B+C) x+(A+C)}{(x+1)\left(x^{2}+1\right)}
$$

so $A+B=1, B+C=1$, and $A+C=-2$. Solving, we obtain $A=-1, B=2$, and $C=-1$,
so $J=-\int \frac{d x}{x+1}+2 \int \frac{x d x}{x^{2}+1}-\int \frac{d x}{x^{2}+1}=-\ln |x+1|+\ln \left(x^{2}+1\right)-\tan ^{-1} x+C_{1}$. Finally, $I=x+\tan ^{-1} x+\ln \left|\frac{x+1}{x^{2}+1}\right|+C$.
33. $I=\int \frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}} d x$. Now $\frac{5 x^{3}-3 x^{2}+7 x-3}{\left(x^{2}+1\right)^{2}}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}=\frac{A x^{3}+B x^{2}+(A+C) x+B+D}{\left(x^{2}+1\right)^{2}}$, so $A=5$,
$B=-3, A+C=7$, and $B+D=-3$. Solving, we obtain $A=5, B=-3, C=2$, and $D=0$, so $I=\int \frac{5 x d x}{x^{2}+1}-\int \frac{3 d x}{x^{2}+1}+\int \frac{2 x d x}{\left(x^{2}+1\right)^{2}}=\frac{5}{2} \ln \left(x^{2}+1\right)-3 \tan ^{-1} x-\frac{1}{x^{2}+1}+C$.
17. $\int_{0}^{\infty} \frac{x d x}{1+x^{2}}=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x d x}{1+x^{2}}=\lim _{b \rightarrow \infty}\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{b}=\lim _{b \rightarrow \infty}\left[\frac{1}{2} \ln \left(1+b^{2}\right)\right]=\infty$, so the integral diverges.
19. $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+4}=\int_{-\infty}^{0} \frac{d x}{x^{2}+4}+\int_{0}^{\infty} \frac{d x}{x^{2}+4}=2 \int_{0}^{\infty} \frac{d x}{x^{2}+4}=2 \lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{x^{2}+4}=\left.2 \cdot \frac{1}{2} \lim _{b \rightarrow \infty} \tan ^{-1}\left(\frac{1}{2} x\right)\right|_{0} ^{b}$

$$
=\lim _{b \rightarrow \infty}\left[\tan ^{-1}\left(\frac{1}{2} b\right)-0\right]=\frac{\pi}{2}
$$

25. $\int_{0}^{1} \frac{d x}{x^{2 / 3}}=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} x^{-2 / 3} d x=\left.\lim _{a \rightarrow 0^{+}}\left(3 x^{1 / 3}\right)\right|_{a} ^{1}=\lim _{a \rightarrow 0^{+}} 3\left(1-a^{1 / 3}\right)=3$
26. $\int_{0}^{4} \frac{d x}{\sqrt{x}-1}=\int_{0}^{1} \frac{d x}{\sqrt{x}-1}+\int_{1}^{4} \frac{d x}{\sqrt{x}-1}$. For the first integral, put $u=\sqrt{x}$, so $d u=\frac{d x}{2 \sqrt{x}} \Rightarrow d x=2 u d u, x=0 \Rightarrow u=0$, and $x=1 \Rightarrow u=1$. Then $\int_{0}^{1} \frac{d x}{\sqrt{x}-1}=\int_{0}^{1} \frac{2 u d u}{u-1}=2 \int_{0}^{1}\left(1+\frac{1}{u-1}\right) d u=[2 u]_{0}^{1}+2 \lim _{c \rightarrow 1^{-}}[\ln |u-1|]_{0}^{c}=-\infty$, so the integral diverges.
