Week 3: 7.3: 9, 15, 21, 23
9. $\int x^{3} \sqrt{1-x^{2}} d x$. Let $x=\sin \boldsymbol{\theta}$, so $d x=\cos \boldsymbol{\theta} d \boldsymbol{\theta}$ and $\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} \boldsymbol{\theta}}=\cos \boldsymbol{\theta}$.

Then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\int x^{3} \sqrt{1-x^{2}} d x & =\int \sin ^{3} \theta \cos \theta \cos \theta d \theta=\int \sin ^{2} \theta \cos ^{2} \theta \sin \theta d \theta \\
& =\int\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta \sin \theta d \theta=\int\left(\cos ^{2} \theta-\cos ^{4} \theta\right) \sin \theta d \theta \\
& =-\frac{1}{3} \cos ^{3} \theta+\frac{1}{5} \cos ^{5} \theta+C=-\frac{1}{15}\left(\cos ^{3} \theta\right)\left(5-3 \cos ^{2} \theta\right)+C \\
& =-\frac{1}{15}\left(1-x^{2}\right)^{3 / 2}\left[5-3\left(1-x^{2}\right)\right]+C=-\frac{1}{15}\left(3 x^{2}+2\right)\left(1-x^{2}\right)^{3 / 2}+C
\end{aligned}
\end{aligned}
$$

Note that the problem can also be solved using the substitution $u=1-x^{2}$.
15. $\int \frac{\sqrt{16 x^{2}-9}}{x} d x$. Let $u=4 x$, so $d u=4 d x$. Then $\int \frac{\sqrt{16 x^{2}-9}}{x} d x=\int \frac{\sqrt{u^{2}-9}}{u} d u$.

$$
\text { Next, let } u=3 \sec \boldsymbol{\theta} \text {, so } d u=3 \sec \boldsymbol{\theta} \tan \boldsymbol{\theta} d \boldsymbol{\theta} \text { and }
$$

$$
\sqrt{u^{2}-9}=\sqrt{9 \sec ^{2} \theta-9}=3 \sqrt{\sec ^{2} \theta-1}=3 \tan \theta . \text { Then }
$$

$$
\begin{aligned}
\int \frac{\sqrt{u^{2}-9}}{u} d u & =\int \frac{(3 \tan \boldsymbol{\theta})(3 \sec \boldsymbol{\theta} \tan \boldsymbol{\theta})}{3 \sec \boldsymbol{\theta}} d \boldsymbol{\theta}=3 \int \tan ^{2} \boldsymbol{\theta} d \boldsymbol{\theta}=3 \int\left(\sec ^{2} \boldsymbol{\theta}-1\right) d \boldsymbol{\theta}=3(\tan \boldsymbol{\theta}-\boldsymbol{\theta})+C \\
& =3\left[\frac{1}{3} \sqrt{u^{2}-9}-\sec \left(\frac{1}{3} u\right)\right]+C=\sqrt{16 x^{2}-9}-3 \sec ^{-1}\left(\frac{4}{3} x\right)+C
\end{aligned}
$$

21. $I=\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4-x^{2}} d x=2 \int_{0}^{\sqrt{3}} \sqrt{4-x^{2}} d x$. Let $x=2 \sin \boldsymbol{\theta}$, so $d x=2 \cos \boldsymbol{\theta} d \boldsymbol{\theta}, \sqrt{4-x^{2}}=\sqrt{4-4 \sin ^{2} \boldsymbol{\theta}}=2 \cos \boldsymbol{\theta}$, $x=0 \Rightarrow \boldsymbol{\theta}=0$, and $x=\sqrt{3} \Rightarrow \boldsymbol{\theta}=\frac{\pi}{3}$. Then

$$
I=2 \int_{0}^{\pi / 3}(2 \cos \boldsymbol{\theta})(2 \cos \boldsymbol{\theta}) d \boldsymbol{\theta}=8 \int_{0}^{\pi / 3} \cos ^{2} \boldsymbol{\theta} d \boldsymbol{\theta}=4 \int_{0}^{\pi / 3}(1+\cos 2 \boldsymbol{\theta}) d \boldsymbol{\theta}=\left.4\left(\boldsymbol{\theta}+\frac{1}{2} \sin 2 \boldsymbol{\theta}\right)\right|_{0} ^{\pi / 3}
$$

$$
=4\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)=\frac{1}{3}(4 \pi+3 \sqrt{3})
$$

23. $I=\int_{1}^{\sqrt{3}} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$. Let $x=\tan \boldsymbol{\theta}$, so $d x=\sec ^{2} \boldsymbol{\theta} d \boldsymbol{\theta}, \sqrt{1+x^{2}}=\sqrt{1+\tan ^{2} \boldsymbol{\theta}}=\sec \boldsymbol{\theta}, x=1 \Rightarrow \boldsymbol{\theta}=\frac{\pi}{4}$, and $x=\sqrt{3} \Rightarrow \boldsymbol{\theta}=\frac{\pi}{3}$. Then $I=\int_{\pi / 4}^{\pi / 3} \frac{\sec ^{2} \theta}{\sec ^{3} \theta} d \boldsymbol{\theta}=\int_{\pi / 4}^{\pi / 3} \cos \theta d \boldsymbol{\theta}=\left.\sin \theta\right|_{\pi / 4} ^{\pi / 3}=\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}=\frac{1}{2}(\sqrt{3}-\sqrt{2})$.
