Ch 1 Lruits.
$\$ 1.2$ Firding lmits quapelsicaly
Examples 1. $f(x)=\frac{x^{3}-1}{x-1}, x \neq 1$.
The behavior of f ar x approaches 1 .

$$
\lim _{x \rightarrow 1} f(x)=3
$$

2. $f(x)=\frac{x}{\sqrt{x+1}-1} \quad \lim _{x \rightarrow 0} f(x)=2$.

The bunarion of $f(x)$ neow $x=0$.
3. Let $f(x)=\left\{\begin{array}{ll}2 & x \neq 2 \\ 0 & x=2 .\end{array} \quad \lim _{x \rightarrow 2} f(x)=1 . \quad\right.$ tunt $f(x)=0$.

Eramples (Limits that fail to ex,3t)

1. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
2. $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$
3. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$

Tormal defrition f linit.
$\lim _{x \rightarrow c} f(x)=L$
$\varepsilon-\delta$ defirition
f becomus anbitranily close to L as x appuashes c.

$$
\begin{aligned}
& |f(x)-L|<\varepsilon, \quad D<|x-c|<\delta \\
& \text { for each } \varepsilon, \exists \delta \text { s.t. }
\end{aligned}
$$

\$1.3 Jinding limits arealytibelly.
Thun 1.1 b.c val unabbers, $x=2 n s i t i v e$ netyer.
(i) $\lim _{x \rightarrow c} b=b$.
(ii) $\lim _{x \rightarrow c} x=c$
(iii) $\lim _{x \rightarrow c} x^{n}=c^{n}$.

Than1.2 f, g fonations with linints $\lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=K$.

1. $\lim _{x \rightarrow C} b f(x)=b L$
2. $\lim _{x \rightarrow \infty} f(x) \pm g_{(x)}=L \pm K$.
3. $\lim _{x \rightarrow 0} f(x) g(x)=L K$
4. $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{L}{K}$ if $k \neq 0$.
5. $\lim _{x \rightarrow \infty}(f(x))^{n}=L^{n}$
$\begin{array}{ll}\text { Thund.3 } \\ \Rightarrow \text { (i) If } p(x) & \text { is a polymanial, then } \lim _{x \rightarrow c} p(x)\end{array} p(c)$.
(ii) If $r(x)=\frac{p(x)}{q(x)}$, whare $p(x) . q(x)$ are pobymomials.
c is a unnember s.t. $g(c) \neq 0$. Then

$$
\lim _{x \rightarrow c} r(x)=\lim _{x \rightarrow c} \frac{p(x)}{f(x)}=\frac{p(c)}{z(c)} .
$$

Thin1.s $\quad \operatorname{lin} \sqrt[m]{x}=\sqrt[n]{c}$ is odd true fer celec

$$
\lim _{x \rightarrow c} \sqrt[m]{x}=\sqrt[n]{c} . \quad \quad x \text { is evan for } c>0 .
$$

Thand.5 If $\lim _{x \rightarrow c} g(x)=L, \lim _{x \rightarrow 1} f(x)=f(\omega$. then

$$
\left.\lim _{x \rightarrow c} f(g(x))=f \sin g(x)\right)=f(L)
$$

Ilone 1.6 is $\lim _{x \rightarrow \infty} \sin x=\sin c$, (is) $\lim _{x \rightarrow c} \cos x=\cos c$
(iiis $\lim _{x \rightarrow c} \tan x=\tan x$ (iv) $\lim _{x \rightarrow c} \cot x=\cot c$.
(v) $\lim _{x \rightarrow c} \sec x=\sec c$ (vi) $\lim _{x \rightarrow c} \operatorname{ssc} x=\csc c$.
 ruturnal of a. If $\lim _{x \rightarrow c} g(x)$ erists, than
$\lim _{x \rightarrow x} f(x)$ enrests and $\lim _{x \rightarrow x} f(x)=\lim _{x \rightarrow c} g(x)$
Examper $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}, \lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}$.
$\lim \frac{\sqrt{x+1}-1}{x}$

Thmb.8 (The sernewze theorrin)
If $\mu(x) \leq f(x) \leq g(x)$ is an open ruterval containing c, axept possibly at c and if $\lim _{x \rightarrow c} h(x)=L=\lim _{x \rightarrow c} g(x)$ then
Exampes $1 \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

$A \cdot \frac{\tan \theta}{2}$

$$
\frac{\tan \theta}{2}
$$

$$
\frac{1}{\cos \theta} \geqslant \frac{\theta}{\sin \theta} \geq 1 .
$$

$$
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1 .
$$

Mors asply sgmerze thm.
2. $\operatorname{lin} \frac{\tan x}{x}=\lim _{x \rightarrow \infty} \frac{\sin x}{x} \frac{1}{\cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \lim _{x \rightarrow 0} \frac{1}{\cos x}=1$.
3. $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}=4 \lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}=4 \lim _{y \rightarrow 0} \frac{\sin y}{y}=4$.
§1.4. Coritimity and one-side limits.
Df A function f is ots at c if
$f(c)$ is offinge. $\lim _{x \rightarrow c} f(x)$ existr and $\lim _{x \rightarrow c} f(x)=f(c)$.
The function f is cartimuons on an pen interval (a, b) if it is cosstimuons at eacle point in (a, b).

Discentimaity: jcump, iufinity, zot defined.
One side limits
imit frem the right $\lim _{x \rightarrow c^{+}} f(x)=L$

$$
\text { uft } \quad \lim _{x \rightarrow c^{-}} f(x)=L
$$

Exangels greatsot integer fusustion $f(x)=[x]$

$$
\lim _{x \rightarrow 0^{-}}[x]=-1 . \quad \lim _{x \rightarrow 0^{+}}[x]=D
$$

Thun $1.10 \quad f=$ funtion $, C, L$ real umbers.
Then $\lim _{x \rightarrow c} f(x)=L$ it $\lim _{x \rightarrow c^{+}} f(x)=L$ and $\lim _{x \rightarrow c^{-}} f(x)=L$.
Def. A funcation f is cts on the closed ruterval $[a, b]$ if f is cortimous on (a, b) and

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=f(a), \quad \lim _{x \rightarrow b^{-}} f(x)=f(b) . \\
& \quad f(x)=\sqrt{1-x^{2}}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{+}} \sqrt{1-x^{2}}=0=f(-1) \\
& \lim _{x \rightarrow 1^{-}} \sqrt{1-x^{2}}=0=f(1)
\end{aligned}
$$

$f(\infty)$ is cts on [-1.1].
Ilam 1.11 b rial number f, g are ats at $x=c$, then the folkring funstions are its
(a) $b f$.
(b) $f \pm g$.
(c) $f g$
(d) f / g if $g(c) \neq 0$.

Thenl.12 If g is ats at $x=c$, f is ats at $g(c)$. Then the compursite $(f \circ g)(x)=f(g(x)$ is cts at $x=c$.

Foangle. Test Fut contsungy.
a) $\tan x=f(x)$.
b) $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & x \neq 0 \\ a & x=0 .\end{array}\right.$
G) $f(x)=x \sin \frac{1}{x}$
$-|x| \leq x \sin \frac{1}{x} \leq|x|$

Thin 1.13 (Intermediath value theormn)
If f is $\operatorname{c} t$ on the closed suterval [a.b] and th is ang nomenter between $f(a)$ and $f(b)$. Thm theme is at least ore zumbre c is $[a, b]$ s.t.

$$
f(c)=k .
$$

Exanple $f(x)=x^{3}+2 x-1$. fixs has a root is [0x].

S2.5 Infimite Lrmits
Dof: f : fonction sefined in an ornes natraval contrining c (excyat pessity at c).

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

mems that for eade $M>0, \exists \delta>0$ s.t. $f(x)>M$ whancever

$$
0<|x-c|<\delta .
$$

$\operatorname{lin} f(x)=-\infty$
means that for eqch $N<0 . \exists \delta>0$ r.t. $f(x)<N$ whenever $0<|x-c|<\delta$.
$\lim _{x \rightarrow e^{-}} f(x)=\infty$ means that $f(x)>M$ for $c-\delta<x<c$.
In ael of the aboue caees, we sayy $x=e$ is a ventical asyengtate.
Than If If $h(x)=\frac{f(x)}{g(x)}$ whene $\left.f(x), g-x\right)$ ceve its at $x=c$, with $f(c) \neq 0$ and $g(c)=0$, Then thex thas a ventizal aryuptote at $x=c$.

Examylos
9. $f(x)=\frac{1}{2(x+1)}$
b) $f(x)=\frac{x^{2}+1}{x^{2}-1}$
c) $f(x)=\cot x$.
d) $f(x)=\frac{x^{2}+2 x-8}{x^{2}-4}$

Ilun1.15 If $\lim _{x \rightarrow c} f(x)=\infty, \lim _{x \rightarrow c} g(x)=L$

1. $\lim _{x \rightarrow c}(f(x) \pm g(x))=\infty$
2. $\lim _{x \rightarrow c} f\left(x, g(x)= \begin{cases}\infty & \text { if } L>0 \\ -\infty & \text { if } L<0\end{cases}\right.$
3. $\lim _{x \rightarrow c} \frac{g(x)}{f(x)}=0$.
