9. $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\ln n}$ is an alternating series with $a_{n}=\frac{n}{\ln n}$, but $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{\ln n}$ does not exist because, using l'Hôpital's Rule, $\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{1 / x}=\lim _{x \rightarrow \infty} x=\infty$. Thus, the series diverges by the Divergence Test.
10. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin \frac{(2 n-1) \pi}{2}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is convergent (see Exercise 5).
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}+\sqrt{n+1}}$ is an alternating series with $a_{n}=\frac{1}{\sqrt{n}+\sqrt{n+1}}$. Since $\frac{a_{n+1}}{a_{n}}=\frac{\sqrt{n}+\sqrt{n+1}}{\sqrt{n+1}+\sqrt{n+2}}<1$ for $n \geq 1$, we see that $a_{n+1}<a_{n}$ for $n \geq 1$, and so $\left\{a_{n}\right\}$ is decreasing for $n \geq 1$. Also, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}=0$, so the AST implies that the given series converges.
12. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[5]{n}}$ is an alternating series with $a_{n}=\frac{1}{\sqrt[n]{n}}$. Consider $y=f(x)=\sqrt[x]{x}=x^{1 / x}$, so $\ln y=\frac{\ln x}{x}$. Then, using l'Hôpital's Rule, $\ln \left(\lim _{x \rightarrow \infty} y\right)=\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0 \Rightarrow \lim _{x \rightarrow \infty} \sqrt[x]{x}=1$, showing that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=1$. Therefore, $\lim _{n \rightarrow \infty} \frac{(-1)^{n-1}}{\sqrt[n]{n}}$ does not exist, and the given series diverges by the Divergence Test.
13. $\sum_{n=1}^{\infty} \frac{n!}{e^{n}}$. Using the Ratio Test with $a_{n}=\frac{n!}{e^{n}}$, we have $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left[\frac{(n+1)!}{e^{n+1}} \cdot \frac{e^{n}}{n!}\right]=\lim _{n \rightarrow \infty} \frac{n+1}{e}=\infty$, so the series diverges.
14. $\sum_{n=2}^{\infty} \frac{(-1)^{n} \ln n}{2^{n}}$. Consider $\sum_{n=2}^{\infty}\left|\frac{(-1)^{n} \ln n}{2^{n}}\right|=\sum_{n=2}^{\infty} \frac{\ln n}{2^{n}}$. Since $\frac{\ln n}{2^{n}}<\frac{n}{2^{n}}$ and $\sum_{n=2}^{\infty} \frac{n}{2^{n}}$ converges (see Exercise 9.3.28), the Comparison Test implies that the given series converges absolutely.
15. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln n)^{n}}$. We use the Root Test: $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left[\frac{1}{(\ln n)^{n}}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$, so the series converges absolutely.
16. Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. We find that for $p \neq 0, \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{(n+1)^{p}}}{\frac{1}{n^{p}}}\right|=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{p}=1$, so the Ratio Test is inconclusive. The case $p=0$ is trivial: $\sum 1$ evidently diverges.
