Week 9: 9.5: 9, 15, 23, 24
9.6: 11, 19, 25, 36
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9, E Sl is an alternating series with an = —, but lim Lt} does not exist because, using 1"Hopital’s Rule,
= n lnn n—oso lan

lim — = =— = lim x = oo. Thus, the series diverges by the Divergence Test.
X300 ny X200 | fx ¥ ' erges by erg

] _ 00 aan—1
15. 2 LMM = Z % is convergent (see Exercise 5).
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see that a, = ay forn = 1, and so [ay | is decreasing for n = 1. Also, Ium iy = lim =10, so the AST
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implies that the given series converges.
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24, Z ( ] is an alternating series with a, = {‘_,+F Consider y = fix) = ¥ =x'* solny = hTr Then,
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lim ay = lim —= = 1. Therefore, lim =D does not exist, and the given series diverges by the Divergence Test.
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Comparison Test implies that the given Series converges absolutely.
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5. Z— We use the Root Test: lim JJay] = lim |—— = lim —— =, so the series converges
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36. Consider the p-series ~ —. We find that for p # 0, lim Satll_ ) @+ D7 = lim ( ) = l.s0the
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Ratio Test 1 inconclusive. The case p = 0is trivial: 3 1 evidently diverges.



