Week 7: 9.3: 4, 6, 16, 23

$$
9.4: 9,11,17,19
$$

4. $\sum_{n=1}^{\infty} n e^{-n}$. Let $f(x)=x e^{-x}$. Then f is nonnegative, continuous, and decreasing on $[1, \infty)$. $\int_{1}^{\infty} x e^{-x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x} d x=\lim _{b \rightarrow \infty}\left[-(x+1) e^{-x}\right]_{1}^{b}=\lim _{b \rightarrow \infty}\left[-(b+1) e^{-b}+2 e^{-1}\right]=2 / e$ (using 1'Hôpital's Rule). Since $\int_{1}^{\infty} x e^{-x} d x$ converges, so does the series.
5. $\frac{1}{3}+\frac{1}{7}+\frac{1}{11}+\frac{1}{15}+\frac{1}{19}+\cdots=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{1}{3+4 n}$. Let $f(x)=\frac{1}{3+4 x}$. Then f is nonnegative, continuous, and decreasing on $[1, \infty) . I=\int_{1}^{\infty} \frac{d x}{3+4 x}=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{3+4 x}=\lim _{b \rightarrow \infty} \frac{1}{4}[\ln (3+4 b)-\ln 7]=\infty$. Since I is divergent, so is the series.
6. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{2 n^{2}+1}}$. Let $f(x)=\frac{x}{\sqrt{2 x^{2}+1}}$. Then f is nonnegative, continuous, and decreasing on $[1, \infty)$.
$I=\int_{1}^{\infty} \frac{x d x}{\sqrt{2 x^{2}+1}}=\lim _{b \rightarrow \infty} \int_{1}^{b} x\left(2 x^{2}+1\right)^{-1 / 2} d x=\lim _{b \rightarrow \infty}\left(\frac{1}{2} \sqrt{2 b^{2}+1}-\frac{1}{2} \sqrt{3}\right)=\infty$. Since I diverges, so does the series.
7. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$. Let $f(x)=\frac{1}{x(\ln x)^{2}}$. Then f is nonnegative, continuous, and decreasing on $[2, \infty)$. $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{d x}{x(\ln x)^{2}}=\lim _{b \rightarrow \infty}\left[-\frac{1}{\ln b}+\frac{1}{\ln 2}\right]=\frac{1}{\ln 2}$, so the series converges.
8. $\frac{\ln n}{n}>\frac{1}{n}$ for $n \geq 3$. Since $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=2}^{\infty} \frac{\ln n}{n}$.
9. $\frac{2+\sin n}{3^{n}}<\frac{3}{3^{n}}=\frac{1}{3^{n-1}}$ for $n \geq 1$. Since $\sum_{n=1}^{\infty} \frac{3}{3^{n}}$ is convergent, so is $\sum_{n=1}^{\infty} \frac{2+\sin n}{3^{n}}$.
10. If n is large, then $a_{n}=\frac{3 n^{2}+1}{2 n^{5}+n+2}$ behaves like $\frac{3 n^{2}}{2 n^{5}}=\frac{3}{2 n^{3}}$, so take $b_{n}=\frac{1}{n^{3}}$.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{3 n^{2}+1}{2 n^{5}+n+2}}{\frac{1}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{3 n^{5}+n^{3}}{2 n^{5}+n+2}=\frac{3}{2}>0, \text { so } \sum_{n=1}^{\infty} \frac{1}{n^{3}} \text { converges } \Rightarrow \sum_{n=1}^{\infty} \frac{3 n^{2}+1}{2 n^{5}+n+2} \text { converges. }
$$

19. If n is large, then $a_{n}=\frac{1}{\sqrt{n^{3}-n-1}}$ behaves like $\frac{1}{\sqrt{n^{3}}}=\frac{1}{n^{3 / 2}}=b_{n}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{3}-n-1}}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}}{\sqrt{n^{3}-n-1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{n^{2}}-\frac{1}{n^{5}}}}=1>0, \text { so } \sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}} \text { converges } \Rightarrow \\
& \sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}-n-1}} \text { converges. }
\end{aligned}
$$

