Week 5: 9.1: 19, 29, 37, 68
9.2: 11, 16, 29, 34
19. $\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+4}{3 n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2-\frac{3}{n}+\frac{4}{n^{2}}}{3+\frac{1}{n^{2}}}=\frac{2}{3}$
29. $\lim _{n \rightarrow \infty} \frac{\sin \sqrt{n}}{\sqrt{n}}=0$ by the Squeeze Theorem: $-\frac{1}{\sqrt{n}}<\frac{\sin \sqrt{n}}{\sqrt{n}}<\frac{1}{\sqrt{n}}$ and $\lim _{n \rightarrow \infty}\left(\pm \frac{1}{\sqrt{n}}\right)=0$, so the sequence converges to 0 .
37. $\lim _{x \rightarrow \infty}\left[\left(1+\frac{2}{x}\right)^{1 / x}\right]=\lim _{u \rightarrow \infty}\left[\left(1+\frac{1}{u}\right)^{1 /(2 u)}\right] \quad$ (where $\left.u=\frac{1}{2} x\right) \quad=1^{0}=1$
68. $a_{1}=\sqrt{2}=2^{1 / 2}, a_{2}=\sqrt{2 a_{1}}=\sqrt{2 \sqrt{2}}=\sqrt{2^{3 / 2}}=2^{3 / 4}, a_{3}=\sqrt{2 a_{2}}=\sqrt{2 \cdot 2^{3 / 4}}=2^{7 / 8}, \ldots, a_{n}=2^{\left(2^{n}-1\right) /\left(2^{n}\right)}$. Thus, $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} 2^{1-\left(1 / 2^{n}\right)}=2^{1}=2$.
11. $\sum_{n=0}^{\infty} 2\left(-\frac{1}{\sqrt{2}}\right)^{n}=\frac{2}{1-\left(-\frac{1}{\sqrt{2}}\right)}=\frac{2}{1+\frac{1}{\sqrt{2}}}=\frac{2 \sqrt{2}}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1}=2 \sqrt{2}(\sqrt{2}-1)=2(2-\sqrt{2})$
16. $1-\frac{3}{2}+\frac{9}{4}-\frac{27}{8}+\cdots=\sum_{n=1}^{\infty}\left(-\frac{3}{2}\right)^{n-1}$ is a divergent geometric series since $|r|=\left|-\frac{3}{2}\right|=\frac{3}{2}>1$.
29. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}=\sum_{n=1}^{\infty}\left[\frac{1}{2} \frac{\frac{1}{2}}{n}-\frac{1}{n+2}\right]$ is a telescoping series.

$$
S_{n}=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+2}\right)\right]=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right), \text { so }
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right)=\frac{3}{4} \text { and so } \sum_{n=1}^{\infty} \frac{1}{n(n+2)}=\frac{3}{4} .
$$

34. $\sum_{n=1}^{\infty} 2^{-n} 5^{n+1}=\sum_{n=1}^{\infty} 5\left(\frac{5}{2}\right)^{n}$ is a divergent geometric series with $|r|=\frac{5}{2}>1$.
