Week 2: 7.1: 5, 11, 15, 17
7.2: 7, 19, 22, 47
5. $\int x \ln 2 x d x$. Let $u=\ln 2 x$ and $d v=x d x$. Then $d u=d x / x$ and $v=\int x d x=\frac{1}{2} x^{2}$, so $\int x \ln 2 x d x=u v-\int v d u=\frac{1}{2} x^{2} \ln 2 x-\int \frac{1}{2} x d x=\frac{1}{2} x^{2} \ln 2 x-\frac{1}{4} x^{2}+C=\frac{1}{4} x^{2}(2 \ln 2 x-1)+C$.
11. $\int \tan ^{-1} x d x$. Let $u=\tan ^{-1} x$ and $d v=d x$. Then $d u=\frac{d x}{1+x^{2}}$ and $v=x$, so $\int \tan ^{-1} x d x=u v-\int v d u=x \tan ^{-1} x-\int \frac{x d x}{1+x^{2}}=x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C$.
15. $\int x \sec ^{2} x d x$. Let $u=x$ and $d v=\sec ^{2} x d x$. Then $d u=d x$ and $v=\int \sec ^{2} x d x=\tan x$, so $\int x \sec ^{2} x d x=u v-\int v d u=x \tan x-\int \tan x d x=x \tan x-\int \frac{\sin x}{\cos x} d x=x \tan x+\ln |\cos x|+C$.
17. $I=\int e^{2 x} \cos 3 x d x$. Let $u=e^{2 x}$ and $d v=\cos 3 x d x$, so $d u=2 e^{2 x} d x$ and $v=\int \cos 3 x d x=\frac{1}{3} \sin 3 x$. Then $I=u v-\int v d u=\frac{1}{3} e^{2 x} \sin 3 x-\frac{2}{3} \int e^{2 x} \sin 3 x d x$. To evaluate the integral on the right, let $s=e^{2 x}$ and $d t=\sin 3 x d x$, so $d s=2 e^{2 x} d x$ and $t=\int \sin 3 x d x=-\frac{1}{3} \cos 3 x$.
Then $I=\frac{1}{3} e^{2 x} \sin 3 x-\frac{2}{3}\left(-\frac{1}{3} e^{2 x} \cos 3 x+\frac{2}{3} I\right)=\frac{1}{3} e^{2 x} \sin 3 x+\frac{2}{9} e^{2 x} \cos 3 x-\frac{4}{9} I$. Thus, $\left(1+\frac{4}{9}\right) I=\frac{1}{3} e^{2 x} \sin 3 x+\frac{2}{9} e^{2 x} \cos 3 x \Rightarrow I=\int e^{2 x} \cos 3 x d x=\frac{1}{13} e^{2 x}(3 \sin 3 x+2 \cos 3 x)+C$.
7. $\int_{0}^{\pi} \cos ^{2} \frac{x}{2} d x=\int_{0}^{\pi} \frac{1+\cos x}{2} d x=\left.\frac{x+\sin x}{2}\right|_{0} ^{\pi}=\frac{\pi}{2}$
19. $\int_{0}^{\pi / 4} \tan ^{2} x d x=\int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x=\left.(\tan x-x)\right|_{0} ^{\pi / 4}=1-\frac{\pi}{4}=\frac{4-\pi}{4}$
22. $\int \tan ^{5} x \sec ^{3} x d x=\int \tan ^{4} x \sec ^{2} x \sec x \tan x d x=\int\left(\sec ^{2} x-1\right)^{2} \sec ^{2} x \sec x \tan x d x$

$$
=\int\left(\sec ^{6} x-2 \sec ^{4} x+\sec ^{2} x\right) \sec x \tan x d x=\frac{1}{7} \sec ^{7} x-\frac{2}{5} \sec ^{5} x+\frac{1}{3} \sec ^{3} x+C
$$

47. $\int \frac{1-\tan ^{2} x}{\sec ^{2} x} d x=\int \frac{1-\left(\sec ^{2} x-1\right)}{\sec ^{2} x} d x=\int \frac{2-\sec ^{2} x}{\sec ^{2} x} d x=\int\left(2 \cos ^{2} x-1\right) d x=\int \cos 2 x d x=\frac{1}{2} \sin 2 x+C$
