Week 2: 7.1: 5, 11, 15, 17 7.2: 7, 19, 22, 47

5. $\int x \ln 2x \, dx$. Let $u = \ln 2x$ and $dv = x \, dx$. Then du = dx/x and $v = \int x \, dx = \frac{1}{2}x^2$, so $\int x \ln 2x \, dx = uv - \int v \, du = \frac{1}{2}x^2 \ln 2x - \int \frac{1}{2}x \, dx = \frac{1}{2}x^2 \ln 2x - \frac{1}{4}x^2 + C = \frac{1}{4}x^2 (2\ln 2x - 1) + C$.

11.
$$\int \tan^{-1} x \, dx$$
. Let $u = \tan^{-1} x$ and $dv = dx$. Then $du = \frac{dx}{1+x^2}$ and $v = x$, so $\int \tan^{-1} x \, dx = uv - \int v \, du = x \tan^{-1} x - \int \frac{x \, dx}{1+x^2} = x \tan^{-1} x - \frac{1}{2} \ln \left(1+x^2\right) + C$.

- 15. $\int x \sec^2 x \, dx$. Let u = x and $dv = \sec^2 x \, dx$. Then du = dx and $v = \int \sec^2 x \, dx = \tan x$, so $\int x \sec^2 x \, dx = uv - \int v \, du = x \tan x - \int \tan x \, dx = x \tan x - \int \frac{\sin x}{\cos x} \, dx = x \tan x + \ln |\cos x| + C$.
- 17. $I = \int e^{2x} \cos 3x \, dx$. Let $u = e^{2x}$ and $dv = \cos 3x \, dx$, so $du = 2e^{2x} \, dx$ and $v = \int \cos 3x \, dx = \frac{1}{3} \sin 3x$. Then $I = uv - \int v \, du = \frac{1}{3}e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x \, dx$. To evaluate the integral on the right, let $s = e^{2x}$ and $dt = \sin 3x \, dx$, so $ds = 2e^{2x} \, dx$ and $t = \int \sin 3x \, dx = -\frac{1}{3} \cos 3x$. Then $I = \frac{1}{3}e^{2x} \sin 3x - \frac{2}{3} \left(-\frac{1}{3}e^{2x} \cos 3x + \frac{2}{3}I \right) = \frac{1}{3}e^{2x} \sin 3x + \frac{2}{9}e^{2x} \cos 3x - \frac{4}{9}I$. Thus, $\left(1 + \frac{4}{9}\right)I = \frac{1}{3}e^{2x} \sin 3x + \frac{2}{9}e^{2x} \cos 3x \Rightarrow I = \int e^{2x} \cos 3x \, dx = \frac{1}{13}e^{2x} (3\sin 3x + 2\cos 3x) + C$.
- 7. $\int_0^{\pi} \cos^2 \frac{x}{2} \, dx = \int_0^{\pi} \frac{1 + \cos x}{2} \, dx = \frac{x + \sin x}{2} \Big|_0^{\pi} = \frac{\pi}{2}$

19. $\int_0^{\pi/4} \tan^2 x \, dx = \int_0^{\pi/4} \left(\sec^2 x - 1 \right) dx = \left(\tan x - x \right) \Big|_0^{\pi/4} = 1 - \frac{\pi}{4} = \frac{4 - \pi}{4}$

22.
$$\int \tan^5 x \sec^3 x \, dx = \int \tan^4 x \sec^2 x \sec x \tan x \, dx = \int \left(\sec^2 x - 1\right)^2 \sec^2 x \sec x \tan x \, dx$$
$$= \int \left(\sec^6 x - 2\sec^4 x + \sec^2 x\right) \sec x \tan x \, dx = \frac{1}{7}\sec^7 x - \frac{2}{5}\sec^5 x + \frac{1}{3}\sec^3 x + C$$

$$47. \int \frac{1 - \tan^2 x}{\sec^2 x} dx = \int \frac{1 - (\sec^2 x - 1)}{\sec^2 x} dx = \int \frac{2 - \sec^2 x}{\sec^2 x} dx = \int (2\cos^2 x - 1) dx = \int \cos 2x \, dx = \frac{1}{2}\sin 2x + C$$