11.3: 39, 45
11.4: 15, 29
3. $x=\sqrt{t}, y=\frac{1}{t} \Rightarrow \frac{d x}{d t}=\frac{1}{2 \sqrt{t}}$ and $\frac{d y}{d t}=-\frac{1}{t^{2}}$. The slope of the tangent line at $t=1$ is

$$
\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{d y / d t}{d x / d t}\right|_{t=1}=\left.\frac{-1 / t^{2}}{1 /(2 \sqrt{t})}\right|_{t=1}=-2
$$

7. $x=2 t-1, y=t^{3}-t^{2} \Rightarrow \frac{d x}{d t}=2$ and $\frac{d y}{d t}=3 t^{2}-2 t \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-2 t}{2}$. The point of tangency is $(x(1), y(1))=(1,0)$ and the slope of the tangent line is $\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{3 t^{2}-2 t}{2}\right|_{t=1}=\frac{1}{2}$, so an equation is $y-0=\frac{1}{2}(x-1)$ or $y=\frac{1}{2} x-\frac{1}{2}$.
8. $x=3 t^{2}+1, y=2 t^{3} \Rightarrow \frac{d x}{d t}=6 t$ and $\frac{d y}{d t}=6 t^{2}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{6 t^{2}}{6 t}=t$ and $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{1}{6 t}$.
9. $x=\sqrt{t}, y=\frac{1}{t} \Rightarrow \frac{d x}{d t}=\frac{1}{2 \sqrt{t}}$ and $\frac{d y}{d t}=-\frac{1}{t^{2}}$, so $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-1 / t^{2}}{1 /\left(2 t^{1 / 2}\right)}=-2 t^{-3 / 2}=-\frac{2}{t^{3 / 2}}$ and $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(-2 t^{-3 / 2}\right)}{1 /\left(2 t^{1 / 2}\right)}=3 t^{-5 / 2} \cdot 2 t^{1 / 2}=\frac{6}{t^{2}}$.
10. $\mathbf{a}=\langle 2,3\rangle$ and $\mathbf{b}=\langle 1,4\rangle$.
a. $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}=\left(\frac{\langle 2,3\rangle \cdot\langle 1,4\rangle}{4+9}\right)\langle 2,3\rangle=\frac{2+12}{13}\langle 2,3\rangle=\left\langle\frac{28}{13}, \frac{42}{13}\right\rangle$
b. $\operatorname{proj}_{\mathbf{b}} \mathbf{a}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b}=\left(\frac{\langle 2,3\rangle \cdot\langle 1,4\rangle}{1+16}\right)\langle 1,4\rangle=\frac{2+12}{17}\langle 1,4\rangle=\left\langle\frac{14}{17}, \frac{56}{17}\right\rangle$
11. $\mathbf{a}=\langle 1,3\rangle$ and $\mathbf{b}=\langle 2,4\rangle$. Because $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}=\left(\frac{\langle 1,3\rangle \cdot\langle 2,4\rangle}{1+9}\right)\langle 1,3\rangle=\frac{2+12}{10}\langle 1,3\rangle=\left\langle\frac{7}{5}, \frac{21}{5}\right\rangle$ is parallel to \mathbf{a}, we can write $\mathbf{b}=\operatorname{proj}_{\mathbf{a}} \mathbf{b}+\left(\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right)=\left\langle\frac{7}{3}, \frac{21}{5}\right\rangle+\left\langle\frac{3}{5},-\frac{1}{5}\right\rangle$.
12. $\mathbf{a} \times \mathbf{b}=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -2 \\ 1 & 1 & 1\end{array}\right|=3 \mathbf{i}+\mathbf{j}-4 \mathbf{k}$, so the required unit vectors are $\pm\left(\frac{3 \mathbf{i}+\mathbf{j}-4 \mathbf{k}}{\sqrt{9+1+16}}\right)$; that is, $\pm \frac{\sqrt{26}}{26}(3 \mathbf{i}+\mathbf{j}-4 \mathbf{k})$.
13. For $P(0,0,0), Q(3,-2,1), R(1,2,2)$, and $S(1,1,4), \overrightarrow{P Q}=\langle 3,-2,1\rangle, \overrightarrow{P R}=\langle 1,2,2\rangle$, and $\overrightarrow{P S}=\langle 1,1,4\rangle$, so $\overrightarrow{P Q} \cdot(\overrightarrow{P R} \times \overrightarrow{P S})=\left|\begin{array}{rrr}3 & -2 & 1 \\ 1 & 2 & 2 \\ 1 & 1 & 4\end{array}\right|=21$. Thus, $V=|\overrightarrow{P Q} \cdot(\overrightarrow{P R} \times \overrightarrow{P S})|=|21|=21$.
