Homework-7

Exercises of Section (9.8, 10.2)

2018.04.17

- (Section 9.8)
- (7). Find the Taylor series of f at c. Then find the radius of convergence of the series.

$$f(x) = \cos x \; , \; c = -\frac{\pi}{6}$$

 \circ Sol:

$$f'(x) = -\sin x \quad ; \quad f''(x) = -\cos x \quad ; \quad f^{(3)}(x) = \sin x \quad ; \quad f^{(4)}(x) = \cos x \quad \cdots$$
$$f'(c) = \frac{1}{2} \quad ; \quad f''(c) = -\frac{\sqrt{3}}{2} \quad ; \quad f^{(3)}(c) = -\frac{1}{2} \quad ; \quad f^{(4)}(c) = \frac{\sqrt{3}}{2} \cdots$$

Hence the Taylor series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} \left(x + \frac{\pi}{6} \right)^n = f(c) + f'(c) \left(x + \frac{\pi}{6} \right) + \frac{f''(c)}{2} \left(x + \frac{\pi}{6} \right)^2 + \frac{f^{(3)}(c)}{3!} \left(x + \frac{\pi}{6} \right)^3 + \cdots$$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2} \left(x + \frac{\pi}{6} \right) - \frac{\frac{\sqrt{3}}{2}}{2!} \left(x + \frac{\pi}{6} \right)^2 - \frac{\frac{1}{2}}{3!} \left(x + \frac{\pi}{6} \right)^3 + \frac{\frac{\sqrt{3}}{2}}{4!} \left(x + \frac{\pi}{6} \right)^4 \cdots$$

$$= \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(x + \frac{\pi}{6} \right)^{2n} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(x + \frac{\pi}{6} \right)^{2n+1}$$

Consider the series with even powers

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(2n+2)!} \left(x + \frac{\pi}{6} \right)^{2n+2} \cdot \frac{(2n)!}{(-1)^n \left(x + \frac{\pi}{6} \right)^{2n}} \right| = \lim_{n \to \infty} \left| \frac{-(x + \frac{\pi}{6})^2}{(2n+1)(2n+2)} \right| = 0 \text{ for } x \in \mathbb{R}$$

Similarly, with odd powers we have

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1}}{(2n+3)!} \left(x + \frac{\pi}{6} \right)^{2n+3} \cdot \frac{(2n+1)!}{(-1)^n \left(x + \frac{\pi}{6} \right)^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{-\left(x + \frac{\pi}{6} \right)^2}{(2n+2)(2n+3)} \right| = 0 \text{ for } x \in \mathbb{R}$$

Hence the radius of convergence is ∞ .

(22) Use the power series representation of functions in this section to find the Taylor series of f at c and the radius of convergence.

$$f(x) = \sin^2 x \ , \ c = 0$$

o Sol:

Using the Table-1 in the p799 in the text book, we have the Maclaurin Series of $\cos x$

$$\Rightarrow f(x) = \sin^2 x = \frac{1}{2} (1 - \cos(2x)) = \frac{1}{2} - \frac{1}{2} \cos(2x) = \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n}$$

$$= \frac{1}{2} - \frac{1}{2} \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n} \right)$$

$$= -\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (2x)^{2n} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2n-1}}{(2n)!} x^{2n}$$

And the radius of convergence is ∞ .

(57). Find the sum of the given series.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

_ _ _ _ _ _ _ _ _ _ _ _ _

o Sol:

Using the Table-1 in the p800 in text book, we know that

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

Thus

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = \ln(1+x) \Big|_{x=1} = \ln 2$$

(63). Evaluate

$$\lim_{x\to 0}\frac{\sin x-x+\frac{1}{6}x^3}{x^5}$$

o Sol:

Using the Table-1 in the p799 in the text book, we have the Maclaurin Series of $\sin x$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \frac{1}{7!}x^7 + \frac{1}{9!}x^9 - \cdots$$

Hence

$$\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5} = \lim_{x \to 0} \left(\frac{1}{120} - \frac{1}{7!}x^2 + \frac{1}{9!}x^4 - \dots \right) = \frac{1}{120}$$

(68).

(a) Find a power series representation of

$$f(x) = \sqrt[3]{1+x^2}$$

(b) Use the result of part(a) to find $f^{(6)}(0)$

- o Sol:
- (a) Using the Binomial Series (p198 in text book)

$$f(x) = \sqrt[3]{1+x^2} = (1+x^2)^{1/3} = 1 + \frac{1}{3}x^2 + \frac{\frac{1}{3}\cdot(-\frac{2}{3})}{2!}x^4 + \frac{\frac{1}{3}\cdot\frac{-2}{3}\cdot\frac{-5}{3}}{3!}x^6 + \cdots$$

3

(b) Hence $f^{(6)}(0)$ is the coefficient of x^6 times 6!

$$f^{(6)}(0) = \left(\frac{\frac{1}{3} \cdot \frac{-2}{3} \cdot \frac{-5}{3}}{3!}\right) \cdot 6! = \frac{10}{27} \cdot 4 \cdot 5 \cdot 6 = \frac{400}{9}$$

• (Section 10.2)

Find the rectangular equation of the given parametric equation and sketch the curve C and indicate it orentation.

Figure 1: Exercise(7),(15) and (19)

(39). Show that

$$x=a\sec t+h \hspace{0.3cm} ; \hspace{0.3cm} y=b\tan t+k \hspace{0.3cm} ; \hspace{0.3cm} t\in \left(-rac{\pi}{2},rac{\pi}{2}
ight)\cup \left(rac{\pi}{2},rac{3\pi}{2}
ight)$$

are parametric equations of a hyperbola with center at (h, k) and transverse and conjugate axes of length 2a and 2b.

 \circ Sol:

$$\sec t = \frac{x-h}{a} \quad ; \quad \tan t = \frac{y-k}{b} \implies \sec^2 t - \tan^2 t = \left(\frac{x-h}{a}\right)^2 - \left(\frac{y-k}{b}\right)^2 = 1 \tag{1}$$

Hence it is a equations of a hyperbola with center at (h, k) and transverse and conjugate axes of length 2a and 2b.