4 Integration

4.1 Antiderivatives and indefinite integral
Definition: A function F' is "an” antiderivative of f on the inteval I

if F'(z) = f(z) forall x € 1.

Theorem 4.1 If F is an antiderivative of f, then G is an antiderivative
of f on the inteval I iff G(z) = F(z) + C, where C' is a const.

proof. Clearly, F'(x) 4+ C' is an anti-derivative of f.
(<) If G(z) is an antiderivative of f. Let

H(z) = G(x) — F(z).
If His NOT const. 3a <bin [ s.t. H(a) # H(b) and
by MVT, da < c<bs.t.

. H() - Ha)

H(c) = p— # 0.

!

Now since G, F are anti-derivative of f, G’ (z) = F'(z) = f(z).
In particular G'(2) = F'(z), hence H'(c) = 0.
This contradiction implies that H(xz) = const. = ¢ and

G(z) = F(x)+ C.

We use the notation

/ f(z)dx



for anti-derivative of f. It is also called indefinite integral.

Basic integration rules:

p-250.
Example 4.5.6.

4.2 Area

Upper and lower sum

f: continuous. Approximation of the area

1. Subdivides the inteval [a, b] into n subintervals

with width Az = b’T“

2. In each subinterval

f(m;) = min. value of f(z) in the i*" subinterval

f(M;) = max. value of f(x) in the i'* subinterval

(can be done by extreme value thm for continuous function
f(z) on closed intervals.)

The lower sum is defined to be
lower sum= s(n) =>_" | f(m;)Ax
upper sum= S(n) = > | f(M;) Az
s(n) < Area of the region < S(n)

Theorem 4.3 f continuous nonnegative on [a, b].

Then nlimoo s(n) = nlimoo S(n).

Note that for any x in the i inteval f(m;) < f(x) < f(M;), and since both
limit in thm 4.3 are equal, by squeeze thm, we can make the following

Definition: f: continuous and nonnegative on the interval [a,b]. The area
of the region bounded by the graph of f, the z-axis and the two lines z = a,
r="bis

Area = nlimOOZ?zl fle) Dy, xiq < ¢ <y,



where Ax = b’T“

Ex6 p266.

4.3 Riemann sums and definite integrals

Riemann sums Definition: f: defined on a closed interval [a, b].
/\: partition of [a, b] given by
a=2)g <11 <Ty<---<xp,=0>0
Ax;: the width of the i** interval. subunterval.
¢;: any point in the i** subinterval.
Then the sum
nllmoozl Vfle) Dy, iy < ¢ < ay,
is called the Riemann sums of f for the partition A.
|All: width of the largest subinterval in the partition A.
Note ||A]| — 0 as n — 0.

Definition: If f is defined on [a, b] and the limit

HAZZHm"OZf(CZ)A"L‘Z? i1 < ¢ < Ly,

exists, the f is integrable on [a, b] and the hmlt is denoted by
HAlmloEf Cz ASC@ f f

and it is called the definite integral of f from a to b.
a: lower limit.

b: upper limit.
Theorem 4.4 If f is continuous on [a, b], then f is integrable on [a, b].

Theorem 4.5 f: continuous, nonnegative on [a, b], then

Area = /b f(z)dx

Properties of definite integrals
Definition: 1. If f is defined at z = a, then we set fa f(x)dx = 0.

2. If f is integrable on [a, b], then we set [," f(z)dz = — f f

Theorem 4.6 If f is integrable on the three closed integrals determinied



by a,b,c, then

/f M_/f m+/f

Theorem 4.7 If f g are integrable on [a, b, k any const., then

1. / kf(q:)dx:k/a f(x)da.
2. /ab(f(:c)j:g(:c))dx: abf(x)dq:i/abg(:c)dx.

Theorem 4.8 1. If f is integrable and nonnegative on [a, b], then

0< / ’ F(z)dx

2. If f,g are integrable and f(x) > g(z) for all z in [a, b], then

/abf(x)dzz: > /abg(x)d:c.

Properties of definite integrals
1. If f is defined at x = a, then we set faf dx—O

2. If f is integrable on [a b], then We set [, f(x)de = — f f(x)dz.
3. If f is integrable on [a,b] and ¢ € [a, b], then

/f M_/f M+/f

4. If f and g are integrable on [a,b] and k is a const., then

1. / kf(q:)dx:k/a f(x)da.
2. /ab(f(:c)j:g(:c))dx: abf(x)dq:i/abg(:c)dx.

5. If f is integrable and nonnegative on [a, b], then

/a b f(x)dz > 0.

6. If f and g are integrable on [a, b] with f(z) > g(x), then

/a  Ha)de > / ' o).



4.4 Fundamental Theorem of Calculas

Theorem 4.9 The fundamental theorem of calculas.
If f is a function continuous on [a, b] and F is an antiderivative of f on [a, b],

then
b
/ f(x)dx = F(b) — F(a).
proof. Let A be the partition of [a, b],
A=< T <Xy < < Tp1<x,=0>

Now F(b)— F(a) = F(x,)— )+ F(ryq)— = F(x1)+ F(x1) — F(x0)

F(z,
Z F(z;-4).

By MVT 3 ¢; € [z;_1, 2] s.b. Fe;) = Lo L) g

Ti—Ti—1

Now this is true for any function, by taking limit, we have
b
/ f(x)dz = F(b) - Fla).

Examples. (i) f14 3v/xdz, (i) f02 |22 — 1|dx z = 3 to divide.
Remark: Notation we write

b
| #a)ds = P@) 1= P) - Fl@).
Note that it is NOT necessary to include a const. C' in the antiderivative
Theorem 4.10 MVT for integrals.
If f is a continuous on |[a, b, then 3 a ¢ € [a, b] s.t.

/ f(@)dz = F(©)(b - a).



proof. 1. If f =const. and any pt. ¢ in [a, b] will do the work.
2. If f #const. By extreme value thm 3 m, M € [a,b] s.t.
f(M) is the maximum and f(m) is the minimum, i.e., we have

f(m) < f(z) < f(M) Yz € [a,b].
= f(m)(b—a) = [} f(m)de < [ f(a)dz < [T f(M)dz = fF(M)(b— a)

M).

Now use the Intermediate Value thm, 3 a ¢ € [a, b] s.t.
[ 1wz =506 a)

The value f(c) f f(z)dz is defined to be the average of f over [a, b].

O

Theorem 4.11 2" fundamental theorem of calculas.
If f is a continuous on an open interval I containing a, then for any x € I,

i o f)dt = f(@).

proof. Let F(x f f(t)dt, then

/

F(.CC) :A$—>07F<I+A§£7F<I> .

Now F(z+Az)—F(z) = [*Y57 f(t)dt— [7 f(t)dt = [T57 f(t)dt = f(c)(z+
Az —x) = f(c)Ax, c € [x,x + Ax] Here we use the MVT for integral. So
as Ax — 0 c— x,

/

F(2) =sa-0(f(0) ) = f(2).

U
Example. F(z) = ff costdt.
Solve: Let u = x* then F(z) = 4du — %(fg costdt)% = cosu - (3z%) =
3z%cosx’.



4.5 Integration by substitution
Recall the chain rule: If y = F(u) and u = g(z) are differentiable, then

Now if F' is an anti-derivative of the function f, we have the following change
of variable theorem.

Theorem 4.12 g: differentiable function with range in an interval I and

f is a function continuous on I. If F'is an anti-derivative of the function f,
then

[ 1ates @it = Pt + 0

In real computation, we do the following;:

Let u = g(x), then du = g(z) dz and

/f x)dr = /f (u)+ C.
Examples.

1. /23:(:62 +1)'dz
2. /:czx/:c?’ + 1dz

3. /25602x(tamc + 3)dx

1 1
4./:E\/2:L‘—1dl’ u=2xr—1 x:u; d:pzidu.
n+1
5. /sm23:p0053xdm /(g(m))"g(x)/dx = g(:EJ)r 1 +C.
n

6. /(Qx +1)(z* + z)dx

—4z
=k

Change of variable for definite integrals
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Theorem 4.14 If u = g(z) has a continuous derivative on the interval [a, b]
and f is continuous on the range of g, then

g(b)

/ Fole))g @de = [ fw)du.

g(a)
Examples. [° —i—dz with u =27 — 1 z = H
1 2z—1 2

Integration of even and odd functions
fisevenif f(—z)= f(z)

fisoddif f(—x) = —f(x).

Then we have

Theorem 4.15 f: integrable on [—a, a].

1. If f is even, then [* f(z)dz =2 [ f(z)dx.
2. If f is odd, then ffa f(z)dx = 0.

5

5.1 Natural logarithmic function

General power Rule

:L,nJrl
"dr = C -1
/x x n+1+ M F

For n = —1, we define the natural logarithmic function to be

lnx:/ @,x>0
1t

The domain of the natural logarithmic function is the set of all positive real
numbers. By 2" fund. thm of cal., nz is an anti-derivative of the function %

Theorem 5.1 The natural logarithmic function has the following properties.
1. The domain is (0, 00) and the image is (—oo, 00).

2. The function is continuous, increasing and 1-1.

3. The graph is concave downward.



proof. 2. %ln:c = % > 0 for z > 0.
f: diff = f: continuous, increasing and 1-1.

2
3. ddQ—mln:E = —% < 0 for x > 0, hence concave downward.
Now mlfgﬁ Inr = —o0, xli";oln:p = 0.

Theorem 5.2 If a,b > 0, n: rational, then we have
1. In1 =0.

2. In(ab) = Ina + Inb.

3. In(a™) = nina.

4. In(3) = Ina — Inb.

pmof 1. by deﬁmtlon Inl = 1 E = O
2. Lin(ax) = L =1 L(lna+Inz) =1

= In(ax) = lna + lnz + C.
Let x = 1, we have Ina = lna + [nl1 + C,
= C=0.

So In(ab) = Ina + Inb.
3. Comparing the derivatives of Inx"” and ninz.
4. Special case of 2.

O

Theorem 5.3 If u is a differentiable function of x, v > 0, then by chain

rule

d, _1d _u
dxnu udxu U

Theorem 5.4 If u is a differentiable function of x, u # 0, then

iln|u| = u—l
dx B

Definition: Denote the letter e to be the positive number s.t.

“d
Ine = — =1
ne @

e~ 2.718281829459045 - - -

Examples 1. differentaible f ( )—l m\(/%
2. Find the derivative of y = \/Tﬂ’ x # 2. taking In.

3. Find the derivative of f(x) = In|cosz|.

9



5.2 Integration of natural logarithmic function

1 /
/—dx = In|z| + C, /u_ = Inju| + C.
T u

Example 1. 1. [ 2dz = 2In|z|+ C

2. [ 1% =1nfdz — 1]+ C

3. Find the area of the region bdd by y = 5%5 and the lines z = 0, z = 3.
4. [ 3€,j;d:c =In|z* + 2|+ C

. [ 2C2dy = In|tanz| + C

tcmm

T +:1:+1
5. [ x2+1 dx

6. f (HUQ u=x+1.
7. fmlnxdx
8. Find [ tanzdr = —In|cosz| + C

9. Find [ secxdr = [ secxSnt gy o = secx + tanz.
seca:+tanac

10. fo% V1 +tan?xdr = fo Vsectxdr = f0§ secxdr

Theorem 5.5

5.3 Inverse functions

Definition: A finction ¢ is the inverse function of the function f if
f(g(z)) = x for each x in the domain of g and

g(f(x)) = x for each z in the domain of f.

In notation we write g by f~!.

If we write f(z) =y, then f~1(f(x)) = f~}(y) = z.

Theorem 5.6 The graph of f contains the point (a,b) iff the graph of f~!
contains the point (b, a).

proof. If (a,b) is in the graph of f, then f(a) =b. So f~1(b) = f~'(f(a)) =
a. U

The proof implies that the graph of f and the graph of f~! are symmetric
w.r.t. the line y = x.

Theorem 5.7 (Existence of inverse) 1. A function f has an inverse iff f is
one-to-one.

10



2. If f is strictly monotonic on its domain, then it is one-to-one and hence
it has an inverse.

proof. 2. f is one-to-one means f(z1) = f(r2) = 1 = 9, 16, 1 # Ty =
f(z1) # f(xg). If 1 # x5 and f is strictly monotonic, then either x; < o
or 1 > x9. In either case f(x1) # f(x2), so f is one-to-one and by 1, f has
an inverse. 0

Remark: y = f(x). If we can solve z = g(y) then y = f(g(y)) hence g is an
inverse of f.

Examples 1. a. f(z)=2>+x—1 b. f(z)=23—-z+1 f(-1)=f(1) =
f(0) = 1. y = 1 horizontal line test.

2. f(z) =22 -3

3. f(x) = sinx.

Derivative of an inverse function

Theorem 5.8 Let f be a function with domain /. If f has an inverse, then
the following are true.

1. If f is continuous on I, then f~! is continuous on its domain.

2. If f is increasing(decreasing) on I, then f~! is increasing(decreasing) on
its domain.

3. If f is differentiable at ¢ with f'(c) # 0, then f~! is differentiable at f(c).

Theorem 5.9 If f is differentiable on an interval I and f has an inverse g,
then g is differentiable at any y = f(z), where f'(z) # 0. In fact, we have at
such point,

1
- f()

d —1
%f (y)

where y = f(z).
(chain rule)

Example 2 f(z) =123 + 2 — 1.

a. what is the value of f~!(y) when y = f(z) = 3.
b. what is the value of (f~!)'(y) when y = f(z) = 3.

11



5.4 Exponential functions

The function f(x) = Inz is increasing(why?) on its entire domain, hence it
has an inverse function f~!. the domain of f~!is the set of all real numbers,
and its range is z > 0.

If x is rational, then
In(e®) =zin(e) =x-1=uz.

Definition: The inverse function of the natural logarithmic function f(z) =
Inx is called the natural exponential function and is denoted by

i) =",

ie.,y=¢e"iff Iny = x.

In(e*) = x. e =z,

Theorem 5.10 operations

a,b € R, then (i) e%® = e®*t (ii) & = e7?.

proof. In(e®™®) = In(e?) +In(e’) = a + b = In(e® - ). O

Properties:

1. The domain of e is (—o00, 00) and the image is (0, co).

2. The function f(xr) = e* is continuous, increasing and 1-1 on its entire
domain.

3. The graph of f(x) = e” is concave upward on its entire domain.

4, lm ez Mmooz

r——00 )7 r—00

Theorem 5.11 wu: differentiable function of z.

Example f(z) = ze®. f'(2) =2

Theorem 5.11 w: differentiable function of x. Then
(i) [etde =e*+C (i) [e"u (x)dz = e"® + C.

12



Example 1. [&¥tldz 2. [Szedr 3. [ =?
4. fol < _dz.

1+4e®

5.5 Bases other than e

Definition: If a is a positive real number(a # 1), x is any real number, then
we define a” to be

a® = e(lna)a:

exponentail with base a. If a = 1, then y = 1¥ = 1 is a const. function.

Properties: (i) a® =1, (ii) a®a¥ = o™, (iii) (a®)¥ = a™.
Definition: If a ia a positive real number(a # 1) and z is any real number,
then the logarithmic function with base a is defined as

Inx
logex = —.
lna

Properties: (i) log,1 =0, (ii) log,zy = logax +l0g.y, (iii) log,z" = ulog,x.

Examples (i) Solve 37 = & and (i) logax = —4.
Theorem 5.13 a > 0, u: differentiable function of x.
1. La* = (lna)a®, 2. L(a") = (lna)aug—z.

d U
3. Llog,x = —(an)m’ 4. Llogyu = —(ln}l)u%.
5. [a®dr = ﬁam +C.

Examples (i) -£23% (i) logio(cosz) (iii) [2°dx.

Theorem 5.14 n: any real number, u: differentiable function of x.

1. %x" =nz"t, 2 %u" = nu”*IZ—Z.
Examples (i) 2L(z) (i) La”.

Theorem 5.15 ‘™ (1+ %)”C — lim () = e

T—00 T z—o00

13



proof Let y = (1 + 37ty = In " (1 + 2y = in(1 + 2
_lim ln(l-i—l) . . .
— % since ln 1S continuous.

T x—oo 1
m In(1 im  In(1+t)—Inl
Let t = 2. Then y ::Blingr "(tﬂ) :mljﬁw = Linzat x =1
=latx=1
xT
=1
Hence Iny = 1, that is, y = e. O

5.6 Inverse trigonometric functions, differentiation

All trigonometric functions do NOT have inverse functions, because they are
all periodic. To get an inverse, we have to restate their domain so that they
are 1-1.

Definition: Inverse trigonometric functions

Function domain range

y = arcsinx iff siny = x —-1<z<1 —5<y<3

y = arccosx iff cosy = x -1<x<1 0<y<m

y = arctanx iff tany = x —o0 <z <00 —5<y<3

y = arccotx iff coty =z -0 <z <00 0<y<m

y = arcsecx iff secy = x lz| > 1 0<y<my#Zor[0,5)U(5, 7]
y = arcescx iff cscy = x lz] > 1 —2<y<3,y#0

Fig 5.29 p 372

Properties: 1. If -1 <z <1, and —% <y < 7, yhen

sin(arcsinx) = x and arcsin(siny) = y.

2. If — <y < 7, then

[MIE]

tan(arctanx) = x and arctan(tany) = y.
3. If[z|>1 0<y< For§ <y<m,then
sec(arcsecr) = x and arcsec(secy) = y.

Only true in these intervals, for example, arcsin(sinm) =0 not .

14



Theorem 5.16 Derivatives of inverse trigonometric functions
u: differentiable function in z.

’

%arcsmu = \/fLTT diarccosu = \/IitT

awarctanu = %u% 4 qrecotu = H?ZQ ,

L aresecu = \UI = L areescu = WI_%

proof. “Lsin(arcsinu) = Lu /

= cos(arcsinu)-Larcsinu = =

= %arcsmu = \/1“_/7 0

Examples y = arcsinx + /1 — x2, find % =7 (2v1 — x?)

5.7 Inverse trigonometric functions, integration

From the differentiable formulas of inverse trigonometric functions, we have

Theorem 5.17 wu: differentiable function of x, a > 0.
L [ \/agl“ﬁ = arcsing + C
2. f a2+u2 = larctcm“ +C

3. fum arcsec' ‘—l—C’

Examples L) [ \/dL = arcsing + C, (i) [ 555 = 3farctcm +C,
(i) [ W —arcsec' 44

2fm—arcsece +C’. u=-e
3. [ Fde = [ Zede + [ Zsdr = —V4 — a2 + 2aresing + C.

dx
4. [ 2 4$+7 fm \/_a'r’ctanT +C
5. Note the following similar but different integrals.
xdx
fx\/x2 1’ f\/x2—1’ f\/x2 1
du fl”Txdx, [ Inzdz.

zlnx’

z du = udx

15



6

7 Application of Integration

7.1 Area of a region between two curves

Find the area of the region between the graph of f and g.

Then
b b
A:/ f(x)dx—/ f(x)dx
’ dz

- [ (@) - gt

= If f and g are continuous on [a, b] with g(z) < f(z) for all z € [a, b], then
the area of the region bounded by the graph of f and g and the lines z = a,
r="bis

A= [ - gl

Examples 1. Find the area of the region bounded by f(z) = 2 — % and

g(x) = .
sol. 2—2*=2=2"4+2—-2=0,2=1,o0r —2.

! 9
Az/(Z—xQ—x)d:v:—.
,2 2

2. Find the area of the region bounded by sinx and coszx.

sol. sinx = cosx = tanx =1, x = 7, %ﬂ_

5w

1 5m
A= / (sinx — cosx)dx = —cosx — sinx|4 = 2V/2.
us 4
4

3. Find the area of the region bounded by f(x) = 323 — 2? — 10z and
g(r) = —2® + 2z.

sol. 323 — 22 — 10x = —2? 4+ 22 = 32° — 122 =0 = 3z(z — 2)(z +2) =0
o= —20,2

A= / (f(z) - gla))de + / (f(2) — gla))dz = 24.

2

16



7.2 Volume: disk method
The disk method.

b
V:/ (R(z))*dx. horizontal revolution.

V= [ (R@) - (@)

Examples 2 p.458, 3 p.459, 4 p.
460

If we know the cross-section of a solid, then we may find the volume of

the solid by
1. A(z): the area of the cross section perpendicular to the x-axis.

V= / bA(:p)dx.

2. A(y): the area of the cross section perpendicular to the y-axis.

V= / dA(y)dy.

7.3 Shell method

Another way to find the volume of a solid is the shell method. Consider the
following solid of revolution. The approximated shell has volume

AV =2mp(y)k(y) Dy.
The volume of the solid is then
d
V= 27?/ p(W)k(y)dy.
This is the shell method.

Examples p.469.
1. Find the volume of the solid formed by revolving the region bounded by

17



z=eY, and the y-axis about the x-axis.
sol.

0<y<l1

1

1
V= 27r/ ye Vdy = (1 — =).
0 e

2. Find the volume of the solid formed by revolving the region bounded by
y=2>+1,y=0,2 =0, 2z =1 about the y-axis.

disk method

V:ﬂ'/o (12—02)dy+7r/1 (12 — (Vy — 1)*)dy

1 2
Iﬂ'/ dy+7r/ (2—y)dy:3§.
0 1
shell method

3T

1
V:27r/ z(z? + 1)de = —.
0 2

3. Find the volume of the solid formed by revolving the region bounded by
y=a4+2+1,y=1, =1, =1 about the the line z = 2.

1
V:27r/ (2 ) (2® + o + Dda = .
; 15
P.471
7.4 Arc length and surface of revolution

Arc length
Consider thr graph of the function y = f(x) between the interval [a,b].

18



Divide [a,b] into a = zg <21 < --- <z, = b.

[~ Z \/ —xi1)* + (Y — yi1)?
= Z \/ Ax;)? + (Ay;)?

_ )2 Az
Z Axl i
=1 _|\All||m—>02?=1 (1+ Ayz 2 Ari= f V1 )2da

Example 1 Find the length of the graph of y = %ﬁ + ﬁ (
area of surface of revolution

AS, = 2mr AL = () Ba? + Ao

Ay;

= 2mf(d)y [ (1+ (52

H|C¢O
[e21[9V)
S—

)QAI‘Z'.

So we have the area of a surface of revolution to be

S:27T/ f@)v1+ (f'(z))de.

Example 1 Find the area of the surface formed by revolving the graph of
f(x) = 2 about the x-axis on the interval [0, 1]. (2—”7(103 -1))

8 Technique of integration

8.1 Basic integration rules

Example 1 Find the integrals
(a). [ ;igd:c (b). [ gligd:c (c). f;ﬂgd:c
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4 1 4 1 4 T
SOl. (CL) / xz T 9d37 = 4/ md,I 9 / de = galTCtang + C

(b). u=12°+9 = du = 2zdx.
4 2
/ e i ]

2+ 9 u
4x 4(x* 4+ 9) — 36 36 T
(c). /x2+9dx:/ P dx:/(él—x2+9)d:p:4m—12arcmn§+0

3 3 3
Tt T — :c—i— u=4—12% du= —2xdx

V iy \/7 V

:/d“ /\/7

(%)
z? 2
3 = — = —z*dx
/ V ]_6 — ZL‘6 / 1 _ J:3 4 4
1 d 1 ’
=3 / ﬁdaz = ga'rcsin% +C.
1 1+e*—e” e’
4, = ————dz=[(1- =z —lIn(l+e*)+C.
/1+emd:c / T o dx /( 1+em)d:c r—In(l+e")+C
1 1
5./cot:1:ln(sin:c)dx = /udu = §u2 +C = §(Zn|sin:€|)2 +C.
cosx

dx = cotxdx

u = Insinx du =
SInT
2 /du) u=2r du=2dz

1 1
6. /tanQQxdx =3 /t(m2udu = 5(/ sec u —

1 1
:—tanu—%+C:§tan2x—x+C.
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1+ 1 T
(4) =

x2+1_x2—|—1+:c2—|—1

.. 1 1
(i) =
V2z —a2  \/1— (2 —1)2
x? 1
A R
(i) | |
2z 20 +2—2 2¢ + 2

(iv) = =

224+2c+1 a22+2x+1 _£L’2—|—2$C—|—1+
1 1 1 — sinx 1 — sinx B

(v) =

1+smx: 1+ sinz1—sinx 1— sin?

8.2 Integration by parts
Consider the product rule

d d

T

2
(x+1)2
1 — sinz 5  SINT
S = sect — —
cos?*x cos*x

d / ,
%(uv) = u%(v) + v%(u) =uv +vu

Apply integration on both sides, we have

uv:/uvl+/vu/:/udv+/vdu

:>/udv =uv — /vdu integration by parts formula.

Examples

1./xexdx:xem —/exdx:xex—ex+0.

u=2x du=dzx

dv=¢e*dx v=2¢e"

1 1 1 1
2./:p2lnxsx = gx?’lnx — = /xdep = —2%lnx — §x3 +C.

3
1
u=Inr du=—dzx
T

1
dv = 2%dx v = gx?’
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3. /(arcsmx)da: = rarcsinr — / S — u = arcsinr du = _dr
iz iz
dv=dxr wv==x
= xarcsinx + E d—udx
2/ Vu

u=1-—2> du= —2xdx

= zarcsine + V1 — 22 + C.
4. /xQSinxdq: = —x?cosx + Q/xcosxdx uw=2x" du=2dx

dv = sinxdx v = —cosx
/xcosxd:c = sinr — /sinxdx u=x du=dx

dv = cosxdr v = sinx

= sinx + cosx + C.

= /:c2sin:cdx = —z2cosx + 2xsinx + 2cosz + C.
5. | €*sinzdx

6. / sce’rdr = scetanz — /secmtanzxdx u = secx du = secxtanzdx
dv = sec’s v =tanx

= secxtanr — / secx(sec’s — 1)dx
= secxtanx — / sec’rdr + /Secxdx
/secxdx = In|secz + tanx|

1 1
= /scegxdx = ésecxtanx + 5ln|secm + tanz| + C.
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8.3 Trigonometric integrals

We will consider integral of the following forms:

/ sin™xcos"xdx or / secxtan" xdx.
1. If the power of sine is odd and positive, i.e., m =2k + 1, k > 0.
/sin2k+1x008":pda€ = /(sm%)kcos"xsmxdm = /(1 — cos’z)Fcos"rsinzdz.

Now set u = cosz.
2. If the power of cosine is odd and positive, i.e., n =2k + 1, k > 0.

/sinmxcoszk“xdx = /sinmx(cos%)kcosxdx = /sinmx(l — sin’x)*cosxdz.

Now set u = sinz.
3. If the power of both sine and cosine are even and nonnegative, make use
of the identity

1 — cos2x 9 1+ cos2x
—_— cos"r = ———

.9
Stn~r = 5 9

to convert the power into odd power of the cosine. Now 2.
Examples

1. / sindzcostrdr
3
cos°x
2. —dx
sinx
4
3. / cos xdx

1. If the power of secant is even and positive,

/sec%xtan”xd:ﬂ = /(sec2x)k1tan"xseczxdx

= /(1 + tan’z)* tan"rsec’xdzx.
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Now let u = tanz du = sec’zdx.
2. If the power of secant is odd and positive,

/secm:ptan%ﬂxd:p = /secmlx(taan)kxsecxtanxda:
_ m—1 2 k
= [ sec" z(sec’r — 1) xsecxtanzdz.

Now let u = secx du = secxrtanxdz.
3. If no secant power and the power of tangent is even and positive,

/tan"azdaz = /tan”Q(seczsc — 1adx.

4. If the integral is of the form [ sec™wdx where m is odd and positive, use
integral by parts.
5. If npne of the above applies, convert the integral into sine and cosine.

Examples

tan®x
\V/secx
/ sec*3x tan®3xdr = / (sec*3z)tan®3x sec*3xdx

dx = (secx)’%tan?’xd:c = /(secx)%tan% secrtanxdx

3. /tan xdr = /tan%(sec% — 1)dx = /tanQ:L’secQ:cd:c - /tanzxdx

/tan wsec’zdr — /(86621’ — 1)dx
secx_ 1  cosx cOST
(—=)dx = ——dx
tan? x COST " Sinx sin’x

1
5. /sm5:1: cosdxdr = 5 /(smx + sin9z)dx

4.

8.4 Trigonometric substitution
1. For integrals involving va? — u?.

Let u = a sinf), then vVa? —u? = a cost), —5 <0 < 7.
2. For integrals involving v/a? + u?.
Let u = a tand, then va? 4+ u? = a sect, —5 < 0 < 7.

24



3. For integrals involving v/u? — a?.
Let u = a sec, then Vu? —a? = fa tand, 0 <0 < 3, 5 <O <.

Examples
d V9 — 22
R R i),
224/9 — 22 Ox
dx
2. =9 =9
/4:62 1 U z du T
_ E/ﬂ
2 ) w41
u=tanb du = sec’f
1 sec?? 1 1
=— df = —In|sectd + tanb| + C = =in|vV42? + 1+ 22|+ C.
2 sect) 2 2
d
3/7:63 u=tanf du = sec’0df
(22 + 1)
= / sec*d = /cos@d@ =sinf +C = :1:
| sec’d N V2 E1
2 /2
4./ < 3dx 1 = V3sec dx = V3sech tanfdo
V3 T
Va2 — 3 = /3tanb
=3 secd=1,0=0,
2 T
T = 2sec) = —,0 = —
V3 6
2 Va2 = & \/3tand G
= / r de — /6 Msec@ tanfdf = \/5/6 tan®0do
vi oz o V3sech 0
s ™ T 1 T \/§7T
:\/3/0 (sec® — 16)df = /3 tand)¢ —\/g-gzx/g(ﬁ—g):l—T
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8.5 Partial Fraction

Transform a rational function into a simple one, so that we can apply the
methods before. For example,

1 1 1 1
/md:c = / =57 = (%)Qd:c (a = 5) T-g= sect, df = secl tanfdo
sect) tanfdo

= Q/W = /csc@d@ = 2 In|csch — cotf| + C' = In|

r—3
x— 2

|+ C.

2~ 52 +6=(z—2)(x—3) ! i + !
N "2 —5r4+6 -2 x-—3

1 1 1 r—3
/x2—5x+6x /x—3$ /x—Q‘T ol +¢

Method of partial fractions
1. Divide if improper. If deg N(z) > deg D(x), we divide into the form

N-
D= polynomial + Dl ((xx)),

where deg N1 < deg D.

2. Factor the denominator D(x) completely into the (pz + ¢)™ and (ax? +
bz + ¢)", where az® + bz + ¢ is irreducible.

3. Linear factors: for each factor of the form (px 4 ¢)™, the partial fraction
has the form

Al AQ Am
+ e —
pr+q (pr+q) (pr + q)

4. Quadratic factors: For each factor of the form (ax? + bz + )", the partial
fraction has the form
BlfL‘ + Cl BQI‘ + CQ 4 BnZL‘ + Cn
ar? +br+c  (ax?+ br + c)? (ax? + bx + )™
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Examples

1
L — = g
/x14m+6x

5z% + 20z + 6 B C
| —————d A A=6,B=-1,C=09.
/ ﬁ+zﬁ+x T e T T e ’ ’

223 —4x — 8 A B Cx+D
3. d — A=2(x=0), B=~1(z=
/(:172—:6)(1:2+4) v z Tz—1" 2+ 4 (v =0), (@
B B —C+D=2 =2
x__Lx_Z:{ZC+D:8 {D:4
/8:p3+13x AZL‘+B+CZL‘+D

— dx

(22 + 2)2 242 (22+42)?

multiplying the common denominatior to get A=8, B=0, C=-3, D=0.

8.6 L'Hopital's Rule

Indeterminate form %, 22, 00 — 00.

Theorem 8.3 f, g: diff. on (a,b) and continuous on [a, ] s.t. ¢’ (z) # 0 in
(a,b), then 3 a point ¢ € (a,b) s.t. (Extended MVT)

f©) _ f) - fla)
g(e) ~ gb) —gla)

proof. We may assume that g(a) # g(b). Let

Then

Now by Rolle’s thm 3 a point ¢ € (a,b) s.t. h'(c) = 0 and hence

SN LRI
g0 —g(@) 9 ="
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Theorem 8.4 L'Hopital's Rule f, g: diff. on (a,b) containing ¢, except

possibly at c¢. Assume that ¢'(z) # 0 in (a,b) except possibly at c. If the

limit % as x approaches ¢ produces the form %, then iﬁle% = :iTC —]gc/ Eg
provided the limit on the right exists. The results applies to 2, =%, 2=,

proof. Consider the case mlﬁ:;f(x): 0, xlj;ﬁrg(x): 0. The other cases are

similar. So let
rp = {10 27

0 z=c
clo {9y I7:

For any ¢ < & < b, F and G are differentiable on (¢, z] and continuous on
[c, z]. So we may apply Thm 8.3 to get that 3 z € (¢, z) s.t.

f(z) _F(z) _Fla)-F(e) _Flx) _ ()
J() "Gk G -G Gl gl

Now let x — ¢* then 2 — ¢* since ¢ < z < z. So we have éfc% =
lim M
emeg (2)” 0
im e2%—
Example 1 ;ﬁoTl' (2)
Example 2 xl’j;o I"T:”
Example 3 x_lTooem,—Qz
Example 4 xli)”;oe_“f\/i = xli»n;o %
Example 5 xlﬁzo(l + 1) (1)
. . (14l
Let y :xlimoo(l - %)x = Iny lei"zoxln(l -+ %):xlﬁnoo%
Example 6 xli’gﬁr (sinx)®.
Let y ::Bljgﬁr (sinx)® = Iny :mlﬁzo(xln(smx)):xlfgo 7“1(8;":”).
Example 7 xl_l)"lﬂ ﬁ — ﬁle_i)"lﬂ (m;_ll’)fzg Apply L'Hopital twice.

8.7 Inproper Integral

1. Infinite limit of integration.
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2. Infinite discontinuity.

L [ f(z)dx ::bﬁn;f:f(x)dx
2. f_boo f(x)dx ::a_lf’foofabf(x)dx
3. 7 f(@)dx :=[°__ f(x)dx+ [ f(x)dzx, ¢ is any real number.

Examples I Cfrm =

2. fo 2+1 _bl—zfroLo 0 1+x2d$ :blim (arctcmm| ) blirzoarctanb =Z.
3. f1 (1—x)e *dz

u=1—2 du=—dzx

dv=e% p=—e°%

JA—z)e¥de = —(1 —x)e™ — [e"dr = ze™" + C.

Now use L'Hopital Rule to find the limit.  (—2)
e’ T 0 T 00 T
4. f o) 1+exd'r - f—oo 1+e’”d T+ fO mdﬂf

= bi”” (arctane®|))+ bﬁm (arctane®|})
—bi””oo(z arctcm eb)+blim (arctan ¢’ — %)
— T _0+I-T—1

- Definition of improper integrals with infinite discontinuities.

1. If f is continuous on [a b) with an infinite discontinuity at b, then
b li

Jo f@)de = 25 [ (=

2. If f is continuous on (a b] with an infinite discontinuity at a, then

J! f@)de = [ f(x)da

3. If f is continuous on [a,b], except for some ¢ at which f has an infinite

discontinuity, then fabf(x)dx = [ f(z)dz + fcb f(z)dx

Examples 1. fol g—f
Since 3%/5 has an infinite discontinuity at = = 0,

14 li 3 1 ~lim 3 N
0 Vs =0+ (3235) =, g 5 (1 = b3) = 5.
2d
2. f a
The 1ntegrand has an infinite discontinuity at = = 0,
2 d lim [ 1.-212y _ lim (1 , 1
s (= l5) (—g +

0 23 b0t \ 2% Tlp) Tpoo+ %2

3. [% &

1z
As above the mtegrand has an infinite discontinuity at x = 0, so
2 dg fo dr | fo de dlverges.

0 73 — 123

) = oo.
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4. fooo \/Eflxmﬂ)

1 dx o8] dx dx
:fQ e +f1 Tz TT) u=+/x du= NG
= bZ%L+ (2arctany/z|3)+ "™ (2arctany/z($)
=2(3)—-0+2(5 %) =m.
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