
1 Limits

1.1

1.2 Finding limits graphically

Examples 1. f(x) = x3−1
x−1

, x 6= 1.
The behavior of f(x) as x approximates 1.
. lim

x→1
f(x) = 3.

2. f(x) = x√
x+1−1

lim
x→0

f(x) = 2.

The behavior of f(x) as x = 0.

3. Let f(x) =

{
1 x 6= 2

0 x = 2
lim
x→2

f(x) = 1, but f(x) = 0.

Examples. (Limits that fail to exist)

1. lim
x→0

|x|
x
.

2. lim
x→0

1
x(2)

.

3. lim
x→0

sin1
x(2)

.

Formal definition of limit.
lim
x→cf(x) = L. f becomes arbitrarily close to L
. as x approaches c.
ε-δ definition | f(x)− L |< ε, 0 <| x− c |< δ
. for each ε, ∃ δ s.t.

1.3 Finding limits analytically

Theorem 1.1 b,c real numbers, n: positive integer.
(i) lim

x→cb = b, (ii) lim
x→cx = c, (iii) lim

x→cx
n = cn.

Theorem 1.2 f ,g functions with limits lim
x→cf(x) = L, lim

x→cg(x) = K.

1. lim
x→cbf(x) = bL.

2. lim
x→cf(x)± g(x) = L±K.

3. lim
x→cf(x)g(x) = LK.

4. lim
x→c

f(x)
g(x)

= L
K

if K 6= 0.

5. lim
x→c(f(x))n = Ln.

Examples. lim
x→2

(4x2 + 2)

. = lim
x→2

4x2+ lim
x→2

2
. =4 · 22 + 2 = 18.

Theorem 1.3
⇒ (i) If p(x) is a polynomial, then lim

x→cp(x) = p(c).

. (ii) If r(x) = p(x)
q(x)

, where p(x), q(x) are polynomials.

. c is a number s.t. q(c) 6= 0, then

. lim
x→cr(x)= lim

x→c
p(x)
q(x)

= p(c)
q(c)

.

Theorem 1.4 lim
x→c

n
√
x = n
√
c. n is odd true for all c

. n is even true for c > 0.

Examples. lim
x→0

√
x2 + 4 = 2.

Theorem 1.5 If lim
x→cg(x) = L, lim

x→cf(x) = f(L), then
lim
x→cf(g(x)) = f(lim g(x)) = f(L).

Thm 1.6 (i) lim
x→csin x = sin c, (ii) lim

x→ccos x = cos c,

. (iii) lim
x→ctan x = tan c, (iiii) lim

x→ccot x = cot c,

. (v) lim
x→csec x = sec c, (vi) lim

x→ccsc x = csc c.

Theorem 1.7 c real number. and f(x) = g(x)∀x 6= c in an open interval of
c. If lim

x→cf(x) exists, then

. lim
x→cg(x) exists and lim

x→cf(x)= lim
x→cg(x).
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Examples. lim
x→1

x3−1
x−1

, lim
x→−3

x2+x−6
x+3

,

lim
√
x+1−1
x

.

Theorem 1.8 (The squeeze theorem)
If h(x) ≤ f(x) ≤ g(x) in an open interval containung c, except possibly at c
and if lim

x→ch(x)=L= lim
x→cg(x)

then lim
x→cf(x) = L.

Example 1. lim
x→0

sin x
x

= 1, lim
x→0

1−cos x
x

= 0.
A = tanθ

2
≥ θ

2
≥ sinθ

2
1

cosθ
≥ θ

sinθ
≥ 1

cosθ ≤ sinθ
θ
≤ 1

Now apply squeeze thm.

2. lim
x→0

tan x
x

= lim
x→0

sin x
x

1
cos x

= lim
x→0

sin x
x

lim
x→0

1
cos x

= 1.

3. lim
x→0

sin 4x
x

=4 lim
x→0

sin 4x
4x

=4 lim
x→0

sin y
y

= 4.

1.4 Continuity and one-side limits

Definition: A function f is continuous at c if f(c) is defined, lim
x→cf(x) exists

and lim
x→cf(x) = f(c).

The function f is continuous on an open interval (a, b) if it is continuous at
each point in (a, b).

Discontinuity: jump, infinity, not defined.

One-side limits
limit from the right lim

x→c+f(x) = L,

limit from the left lim
x→c−f(x) = L.

Examples. greatest integer function f(x) = [x].
lim
x→0−

[x] = −1, lim
x→0+ [x] = 0.

Theorem 1.10 f :function, c, L: real numbers.
Then lim

x→cf(x) = L iff lim
x→c+f(x) = L and lim

x→c−f(x) = L.
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Definition: A function f is continuous on the closed interval [a, b] if f is
continuous on (a, b) and lim

x→a+f(x) = f(a), lim
x→b−f(x) = f(b).

Examples. f(x) =
√

1− x2.
lim

x→−1+

√
1− x2 = 0 = f(−1),

lim
x→1−

√
1− x2 = 0 = f(1).

f(x) is continuous on [−1, 1].

Theorem 1.11 b: real number. f , g are continuous at x = c, then the
following functions are continuous:
(a) bf .
(b) f ± g.
(c) fg.
(d) f

g
if g(c) 6= 0.

Theorem 1.12 If g is continuous at x = c, f is continuous at g(c), then the
composite (f ◦ g)(x) = f(g(x)) is continuous at x = c.

Examples. Test for continuity.

(a) f(x)=tan x.(not defined at x = π
2
+nπ,n ∈ N) (b) f(x) =

{
sin 1

x
x 6= 0

0 x = 2.

(c) f(x) = xsin 1
x
, − | x |≤ xsin 1

x
≤| x |.

Theorem 1.13 (Intermediate value theorem)
If f is continuous on the closed interval [a, b] and k is any number between
f(a) and f(b), then there is at least one number c in [a, b] s.t. f(c) = k.

Examples. f(x) = x3 + 2x− 1. f(x) has a root in [a, b].

1.5 Infinite limits

Definition: f : function defined in an open interval containing c(except pos-
sibly at c).
lim
x→cf(x) =∞
means that for each M > 0, ∃δ > 0 s.t. f(x) > M whenever 0 <| x− c |< δ.
lim
x→cf(x) = −∞
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means that for each N > 0, ∃δ > 0 s.t. f(x) < M whenever 0 <| x− c |< δ.
lim
x→c−f(x) =∞ means that f(x) > M for c− δ < x < c.
In each of the above cases, we say x = c is a vertical asymptate.

Theorem 1.14 If h(x) = f(x)
g(x)

where f(x), g(x) are continuous at x = c,

with f(c) 6= 0 and g(c) 6= 0, then h(c) has a vertical asymptate at x = c.

Examples. (a) f(x) = 1
2(x+1)

. (b) f(x) = x2+1
x2−1)

. (c) f(x) = cot x. (d)

f(x) = x2+2x−8
x2−4

.

Theorem 1.15 If lim
x→cf(x) =∞, lim

x→cg(x) = L.

1. lim
x→c(f(x)± g(x)) =∞.

2. lim
x→cf(x)g(x) =

{
∞ if L > 0,
−∞ if L < 0.

3. lim
x→c(

g(x)
f(x)

) = 0.

2 Differentiation

2.1 The derivative and the tangent line problem

Definition: If f is defined on an open interval containing c, and if the limit
lim
4x→c

4y
4x = lim

4x→c
f(c+4x)−f(c)

4x = m

exists, then the line through (c, f(c)) with shape m is the tangent line to the
graph of f at (c, f(c)).

The derivative of f at x is defined by
f
′
(x) = lim

4x→c
f(c+4x)−f(c)

4x
provided the limit exists. Forr all x for which the limit exists, f

′
is a function

of x.

Remark: The process of finding the derivative of a finction is called differ-
entiation. A function f is differentiable at x if f

′
(x) = exists. f is called

differentiable on (a, b), if it is differentiable at each point x in (a, b).
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Notation: f
′
(x), dy

dx
, y
′
, d
dx
f .

Examples. (a) f(x) = x2 + 1, f(x) =
√
x. (f

′
(c) = lim

x→c
f(x)−f(c)

x−c )

Differentiability:
Not differentiable if (1) f

′
(c) = lim

x→c−
f(x)−f(c)

x−c 6= lim
x→c+

f(x)−f(c)
x−c

or (2) f
′
(c) = lim

x→c
f(x)−f(c)

x−c = ±∞.

Examples. (a) f(x) =| x− 2 |, (b) f(x) = x
1
3 .

Theorem 2.1 If f is differentatiable at x = c, then f is continuous at x = c.

proof. lim
x→cf(x)− f(c) = lim

x→c(x− c)
f(x)−f(c)

x−c = lim
x→c(x− c)

lim
x→c

f(x)−f(c)
x−c

= lim
x→c(x− c) · f

′
(c) = 0.

This means lim
x→cf(x) = f(c),i.e. f(x) is continuous at c.

2.2 Bsic differentiation rule

Theorem 2.2 If c is a real number, then
d
dx
c = 0.

Theorem 2.3 If n is any rational number, then f(x) = xn is differentiable
and f

′
(x) = nxn−1.

In particular, we have d
dx
x = 1.

Examples. Ex2. p109.

Theorem 2.4 If f is differentiable and c is any real number, then
d
dx

(cf(x)) = cf
′
(x).

Theorem 2.5 If f(x) and g(x) are differentiable, then
f ± g are differentiable and
d
dx

(f ± g)(x) = f
′
(x)± g′(x).

Examples. (a) f(x) = 1
x2 , (b) f(x) = x3 − 4x+ 5.

5



Theorem 2.6 d
dx

(sin x) = cos x, d
dx

(cos x) = −sin x.

sin(x+ y) = sin xcos y + cos xsin y.

2.3 product and quotient rules

Theorem 2.7 (product rule)
If f(x) and g(x) are differentiable, then
d
dx

(f(x)g(x)) = f
′
(x)g(x) + f(x)g(x)

′
.

Theorem 2.8 (quotient rule)
If f(x) and g(x) are differentiable with g(x) 6= 0,

then d
dx

(f(x)
g(x)

) = f
′
(x)g(x)−f(x)g(x)

′

g(x)2
.

Examples. Fing the derivatives
1. h(x) = (3x− 2x2)(5 + 4x).
2. y = 5x−2

x2+1
.

3. y = 3x2sin x.

4. The tangent line of f(x) =
3− 1

x

x+5
at (−1, 1).

5. y = 1−cos x
sin x

= csc x− cot x.

High order derivatives
1st order y

′
f
′
(x) dy

dx
df
dx

2nd order y
′′
f
′′
(x) d2y

dx2
d2

dx2f
...
nth order yn fn(x) dny

dxn
dn

dxnf

Theorem 2.8 d
dx

(tan x) = sec2 x, d
dx

(cot x) = −csc2 x.
d
dx

(sec x) = sec xtan x, d
dx

(csc x) = −csc xcot x.

2.4 Chain rule

Theorem 2.10 If y = f(x) is a differentiable function of u and u = g(x) is
a differentiable function of x then y = f(g(x)) is a differentiable function of
x and
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dy
dx

= dy
du

du
dx

or d
dx
f(g(x)) = f

′
(g(x)) · g′(x).

Examples. Fing dy
dx

if
(1) y = (x+ 1)3.
(2) general power rule y = (u(x))u, n rational, u(x) is differentiable
then dy

dx
= nu(x)n−1 du

dx
.

(3) f(x) = 3
√

(x2 − 1)2.
(4) g(t) = −7

(2t−3)2
.

(5) f(x) = x
3√x2+4

.

(6) y = (3x−1
x2+3

)2.

(7) d
dx

(sin u) = cos udu
dx

, d
dx

(cos u) = −sin udu
dx

.
d
dx

(tan u) = sec2 udu
dx

, d
dx

(cot u) = −csc2 udu
dx

.
(8) y = cos2x.
(9) f(t) = sin34t.

2.5 Implicit differentiation

If the function y of x is given implicitly by
f(x, y) = 0,
we can still find dy

dx
in terms of f(x, y) and the chain rule.

Examples. 2, 4, 5, 6, 7.

3 Application of differentiation

3.1 Extreme on an interval

Definition:(extreme)
f : function defined on an interval I containing c.
1. f(c) is the minimum of f on I if f(c) ≤ f(x), ∀x ∈ I.
2. f(c) is the maximum of f on I if f(c) ≥ f(x), ∀x ∈ I.
They are also called the extreme values, absolute min or absolute max.
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Theorem 2.10 (extreme value theorem)
If y = f(x) is continuous on a closed interval [a, b], then f has both a mini-
mum and a maximum on the interval.

Definition:(relative extrema)
1. If ∃ open interval containing c on which f(c) is a maximum, then f(c) is
called a relative maximum of f , or f has a relative maximum at (c, f(c)).
2. If ∃ open interval containing c on which f(c) is a minimum, then f(c)
is called a relative minimum of f , or f has a relative minimum at (c, f(c)).

Definition:(critical numbers)
Let f be defined on c. If f

′
(c) = 0 or f is Not differentiable at c, then c is a

critical number of f .
Theorem 2.10 If f has a relative minimum or relative maximum at c, then
c is a critical number of f.

proof. (i) If f is Not differentiable, then by definition c is a critical number.
(ii) If f is differentiable at x = c, f

′
(x) is > 0, = 0, < 0. If f

′
(c) > 0, i.e.

f
′
(c) = lim

x→c
f(x)−f(c)

x−c > 0. This implies that f(x)−f(c)
x−c > 0 in a neighborhood of

c, x 6= c.
left of c, x < c, and f(x) < f(c)⇒ f(c) is Not a relative minimum,
right of c, x > c, and f(x) > f(c)⇒ f(c) is Not a relative maximum.
So, f

′
(c) > 0 contradicts the hypothesis that f(c) is a relative extremum.

Finding extreme on a closed interval [a, b]
1. Find the critical numbers of f in (a, b).
2. Evaluate f at each critical number.
3. Evaluate f at the endpoints a and b.
4. The least of these is the minimum and the largest is the maximum.

Examples. Find the extrema of f(x) = 2x− 3x
2
3 on [−1, 3]. p.168.

3.2 Rolle
′
s theorem and the MVT

Theorem 3.3 (Rolle) f : continuous on [a, b] and differentiable on (a, b).
If f(a) = f(b), then ∃ c ∈ (a, b) s.t. f

′
(c) = 0.
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proof. (a) If f(x) = d = f(a) = f(b), f is const. on the interval [a, b],
f
′
(x) = 0 for any x ∈ (a, b).

(b) If f(x) > d for some x ∈ (a, b). By extreme value theorem, f has a
maximum at some point c in the interval. Since f(c) > d, the maximum
is NOT at the endpoints. This implies that f(c) is relative maximum, by
theorem f c = 0, since f is differentiable at c.
(c) If f(x) < d for some x ∈ (a, b), we get a relative minimum by the
argument above.

Theorem 3.4 (MVT) If f is continuous on [a, b] and differentiable on (a, b),

then ∃ c ∈ (a, b) s.t. f
′
(c) = f(b)−f(c)

b−a .

proof. Define the function g(x) by

g(x) = f(x)− f(b)−f(c)
b−a (x− a)− f(a).

Then g(a) = 0 = g(b), g is continuous on [a, b] and differentiable on (a, b).
By Rolle

′
s theorem ∃c ∈ (a, b) s.t. g

′
(c) = 0. Now

0 = g
′
(c) = f

′
(c) = f(b)−f(c)

b−a .

i.e. f
′
(c) = f(b)−f(c)

b−a .

EX 3. p175.

3.3 Increasing and decreasing functions and the 1st

derivative test

Definition: A function f is
increasing on an interval I if for any x1, x2 ∈ I,
x1 < x2 implies that f(x1) < f(x2).
decreasing on an interval I if for any x1, x2 ∈ I,
x1 < x2 implies that f(x1) > f(x2).

Theorem 3.5 Test for increasing and decreasing.
f : continuous on [a, b], differentiable on (a, b).
1. If f

′
(x) > 0∀x ∈ I, then f is increasing on [a, b].

2. If f
′
(x) < 0∀x ∈ I, then f is decreasing on [a, b].

1. If f
′
(x) = 0∀x ∈ I, then f is constant on [a, b].
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proof. If f
′
(x) > 0∀x ∈ I. For any x1, x2 ∈ (a, b) with x1 < x2. By MVT

∃x1 < c < x2 s.t. f
′
(c) = f(x2)−f(x1)

x2−x1
> 0.

⇒ f(x2) > f(x1). i.e. f is increasing on (a, b).

Examples 1 p180.

Finding functions on which a function is increasing or decreasing.
1. Locate the critical numbers of f in (a, b), and use these numbers to deter-
mine the test intervals.
2. In each of the intervals, determine the sign of f

′
(x) at one testnumber.

3. Use the above Theorem 3.5.

Theorem 3.6 c is a critical number of f that is continuous on an open in-
terval I containing c. If f is differentiable on the interval, except possibly at
c, then
1. If f

′
(x) changes from negative to positive at c, then f has a relative min-

imum at (c, f(c)).
2. If f

′
(x) changes from positive to negative at c, then f has a relative max-

imum at (c, f(c)).
3. If f

′
(x) is positive on both sides of c or is negative on sides of c, then f

neither a relative minimum nor a relative minimum.

Examples 3, 4 p183.

3.4 Concavity and 2nd derivative test

Definition: f : differentiable on I.,
The graph of f is concave upward on I if f

′
(x) is increasing on I,

. concave downward on I if f
′
(x) is decreasing on I.

The above are equivalent to the following:
f is concave upward on I ⇔ the graph of f lies above of its tangent lines on
I.
f is concave downward on I ⇔ the graph of f lies below of its tangent lines
on I.
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Theorem 3.7(Test for concavity)
f function on I whose 2nd derivative exists on I.
1.If f

′′
(x) > 0 for all x ∈ I, then f is concave upward on I.

2.If f
′′
(x) < 0 for all x ∈ I, then f is concave downward on I.

Definition: f : continuous on open interval I, c ∈ I.
If the graph of f has a tangent line at the point (c, f(c)), then the point
(c, f(c)) is a point of inflection of f is the concavity of f changes from
upward to downward(or downward to upward).

Theorem 3.8 If (c, f(c)) is a point of inflection, then either f
′′
(x) = 0 or f

′′

does Not exist at x = c.

Examples. f(x) = x4 − 4x3. Find the points of inflection.
f
′
(x) > 0 = 4x3 − 12x2

f
′′
(x) = 12x2 − 24x = 12x(x− 2)

f
′′
(x) = 0⇒ x = 0, 2

. -∞< x < 0 0 < x < 2 2 < x <∞
test value x = −1 x = 1 x = 3
. f

′′
(−1) > 0 f

′′
(1) < 0 f

′′
(3) > 0

. -upward downward upward

Theorem 3.8 2nd derivative test
f : a function s.t. f

′
(c) = 0 and f

′′
(x) exists on an open interval containing

c.
1. If f

′′
(c) > 0, then f has a relative minimum at (c, f(c)).

2. If f
′′
(c) < 0, then f has a relative maximum at (c, f(c)).

If f
′′
(c) = 0, the test fails. That is, f may have a relative maximum, relative

minimum or neither. In this case, we should use 1st derivative test.

3.5 Limits and infinity

Definition: L: a real number.
1. lim

x→∞f(x) = L means that for every ε > 0, ∃M > 0 s.t. | f(x) − L |< ε
whenever x > M .
2. lim

x→−∞f(x) = L means that for every ε > 0, ∃N < 0 s.t. | f(x) − L |< ε
whenever x < N .
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In both cases, we say that y = L is a horizontal asymptote for the func-
tion f(x) as x→∞.

Theorem 3.8 Limits at infinity.
IF t > 0 rational number, c is any real number, then
lim
x→∞

c
xr = 0.

If xr is defined for x < 0, then
lim

x→−∞
c
xr = 0.

Ex 3, 4, 5.

If lim
x→∞f(x), lim

x→∞g(x) exists, then
lim
x→∞(f(x) + g(x))= lim

x→∞f(x)+ lim
x→∞g(x),

lim
x→∞(f(x)g(x))= lim

x→∞f(x)· lim
x→∞g(x).

Definition: 1. lim
x→∞f(x) =∞ means f(x) > M whenever x > N .

3.6 A summary and sketching

Guide lines:
1. Determine the domain and range of the function.
2. Deter the intercepts, asymptotes and symmetry of the graph.
3. Locate the x-value for which f

′
(x) and f

′′
(x) either are zero or do Not

exist. Use these results to determine relative extreme and points of inflection.

Examples 1, 2, 4, 5.

3.7

3.8

3.9 Differentials

The tangent line at (c, f(c)) is y = f(c) + f
′
(c)(x = c) when x − c − 4x

is vert small, the change 4y = f(c + 4x) − f(c)can be approximated by
4y = f(c+4x)− f(c) ≈ f

′
(c)4x. (1)
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When 4x → 0, denote it by dx, we then define the differential to dy =
f
′
(x)dx.

Examples 2, before 4, 5.

(1)⇒ f(x+4x) ' f(x) + dy = f(x) + f
′
(x)4x.
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