- 1. (15%) Find the relative extrema of $f(x) = 15x^{2/3} 3x^{5/3}$.
- 2. (15%) Sketch the graph of the function $f(x) = \frac{x^2}{x^2-1}$.
- 3. (15%) Find $\frac{dy}{dx}$ at the point $(\frac{\pi}{2}, \pi)$ if $x \sin y y \cos 2x = 2x$.
- 4. (a) (5%) Find $\lim_{x\to -3} \frac{x^2+2x-3}{x^2+4x+3}$.
 - (b) (5%) Find $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$.
 - (c) (5%) Let

$$f(x) = \begin{cases} -x+3 & \text{if } x < 2\\ \sqrt{x-2}+1 & \text{if } x \ge 2 \end{cases}$$

Find $\lim_{x\to 2} f(x)$ if it exists.

- 5. (10%) Let $h(x) = \frac{\sin x}{1 + \cos x}$, $-\pi < x < \pi$. Determine where the graph of h(x) is concave upward, where h(x) is concave downward. Also, find all inflection points of h(x).
- 6. (10%) Prove that $f(x) = x^5 + 6x + 4$ has exactly one zero in $(-\infty, \infty)$.
- 7. (10%) Find the extreme values of the function $f(x) = 3x^4 4x^3 8$ on [-1, 2].
- 8. Find $\frac{dy}{dx}$ if
 - (a) (5%) $y = \tan^3(3x^2 + 1)$,
 - (b) (5%) $y = (\frac{2x-1}{x^2+1})^5$.