聯合微積分 作業解答 5.2 5.3

5.2 Volumes:Disks, Washers, and Cross Sections

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations and /or inequalities about the indicated axis.

15.
$$y = -x^2 + 2x, y = 0$$
; the x-axis

$$-x^2 + 2x = 0 \Rightarrow x = 0 \text{ or } 2$$

$$\int_0^2 \pi (-x^2 + 2x)^2 dx = \pi \int_0^2 x^4 - 4x^3 + 4x^2 dx$$
$$= \pi (\frac{1}{5}x^5 - x^4 + \frac{4}{3}x^3)|_0^2$$
$$= \pi (\frac{32}{5} - 16 + \frac{32}{3})$$
$$= \frac{16}{15}\pi$$

16.
$$y = \sqrt{x-1}, y = 0, x = 2, x = 5$$
; the x-axis

$$\int_{2}^{5} \pi (\sqrt{x-1})^{2} dx = \pi \int_{2}^{5} x - 1 dx$$

$$= \pi (\frac{x^{2}}{2} - x)|_{2}^{5}$$

$$= \pi [(\frac{25}{2} - 5) - (\frac{4}{2} - 2)]$$

$$= \frac{15}{2} \pi$$

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the indicated line.

35. $y = 4 - x^2$, y = 0; the line y = 5

$$4 - x^{2} = 0 \Rightarrow x = 2 \text{ or } -2$$

$$\int_{-2}^{2} \pi (0 - 5)^{2} - \pi [(4 - x^{2}) - 5]^{2} dx = \pi \int_{-2}^{2} (4 - x^{2})(6 + x^{2}) dx$$

$$= \pi \int_{-2}^{2} 24 - 2x^{2} - x^{4} dx$$

$$= \pi (24x - \frac{2}{3}x^{3} - \frac{1}{5}x^{5})|_{-2}^{2}$$

$$= \pi (96 - \frac{32}{3} - \frac{64}{5})$$

$$= \frac{1088}{15}\pi$$

37. $x = y^2 - 4y + 5$, x = 2; the line x = -1

$$y^{2} - 4y + 5 = 2 \Rightarrow (y - 3)(y - 1) = 0$$

$$\begin{split} \int_{1}^{3}\pi[2-(-1)]^{2}-\pi[(y^{2}-4y+5)-(-1)]^{2}dy &=\pi\int_{1}^{3}9-(y^{2}-4y+6)^{2}dy\\ &=\pi\int_{1}^{3}(-y^{4}+8y^{3}-28y^{2}+48y-27)dy\\ &=\pi(\frac{-1}{5}y^{5}+2y^{4}-\frac{28}{3}y^{3}+24y^{2}-27y)|_{1}^{3}\\ &=\frac{104}{15}\pi \end{split}$$

Find the volume of the solid with the given base R and the indicated shape of every cross section taken perpendicular to the x-axis .

53. Cross section : a square

$$A(x) = \pi x$$

$$\int_0^4 A(x)dx = \int_0^4 \pi x dx$$
$$= 8\pi$$

5.3 Volumes Using Cylindrical Shells

 ${f 5.}$ Use the method of cylindrical shells to find the volume of the solid generated

by revolving the region about the indicated axis or line.

$$y^2 = 8x, y = x^2 \Rightarrow (y^2)^2 = 64y$$

 $\Rightarrow y(y-4)(y^2+4y+16) = 0$

$$\int_0^4 2\pi y (\sqrt{y} - \frac{1}{8}y^2) dy = 2\pi \int_0^4 y^{\frac{3}{2}} - \frac{1}{8}y^3 dy$$
$$= 2\pi (\frac{2}{5}y^{\frac{5}{2}} - \frac{1}{32}y^4)|_0^4$$
$$= \frac{48}{5}\pi$$

Use the method of cylindrical shells to find the volume of the solid generated by revolving the region bounded by the graphs of the equations and /or inequalities about the indicated axis. Sketch the region and a representative rectangle.

17.
$$y = \sqrt{1-x^2}$$
, $y = -x+1$; the y-axis

$$\int_{0}^{1} 2\pi x [\sqrt{1-x^{2}} - (-x+1)] dx = 2\pi \int_{0}^{1} x \sqrt{1-x^{2}} + x^{2} - x dx$$

$$= 2\pi \left[\frac{-1}{3} (1-x^{2})^{\frac{3}{2}} + \frac{1}{3} x^{3} - \frac{1}{2} x^{2} \right] \Big|_{0}^{1}$$

$$= 2\pi \left(\frac{1}{3} - \frac{1}{2} - \frac{-1}{3} \right)$$

$$= \frac{1}{3}\pi$$

Find the volume of the solid generated by the revolving the region bounded by the graphs of the equations about the indicated line. Sketch the region and a representative rectangle.

30.
$$y = x^2 + 1$$
, $y = 0$, $x = 0$, $x = 2$; the line $x = 3$

$$\int_0^2 2\pi (3-x)(x^2+1)dx = 2\pi \int_0^2 -x^3 + 3x^2 - x + 3dx$$
$$= 2\pi (\frac{-1}{4}x^4 + x^3 - \frac{1}{2}x^2 + 3x)|_0^2$$
$$= 16\pi$$

32.
$$y = \sqrt{x}, y = 0, x = 4$$
; the line $y = 2$

$$\int_0^2 2\pi (2-x)(4-\sqrt{x})dx = 2\pi (\frac{2}{5}x^{\frac{5}{2}} - 2x^2 - \frac{4}{3}x^{\frac{3}{2}} + 8x)|_0^2$$
$$= 16\pi$$

34. y = x, $y = x^2$; the line y = 2

$$\int_{0}^{1} 2\pi (2-y)(\sqrt{y}-y)dy = 2\pi \int_{0}^{1} y^{2} - y^{\frac{3}{2}} - 2y + 2y^{\frac{1}{2}}dy$$
$$= 2\pi (\frac{1}{3}y^{3} - \frac{2}{5}y^{\frac{5}{2}} - y^{2} + \frac{4}{3}y^{\frac{3}{2}})|_{0}^{1}$$
$$= \frac{8}{15}\pi$$