2.1 The Derivative
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50. lim x) = lim (x+1) =1, lim x)= lim (x2+1) =1 Therefore, lim f(x) = 1. Also,
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f(0)=0+1=1,andso limof(x) = [ (0). Therefore, f is continuous at 0.
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To show that f is not differentiable at 0, let & < 0 and consider
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Ifx <0, then f(x) = —x2, and a similar calculation shows that
S (x) = —2x. So f is differentiable everywhere.
i i <0 From th Its of part b that f” —2x ifx <0
¥ ifx>0 ¢. From the results of part b, we see that f” (x) = 2% ifx >0
2.2 Basic Rules of Differentiation
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48. y = i-x-?' —-2x+5= j—y =x2—-2. The slope of the given line is 2, so set 2 -2=2=x2=4=x =42 The required
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points are (72, -132) and (2, -131)
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9. y=L13 _2x +5= & = x2 — 2. The slope of the given line is 1, so the normal line has slope —1. We set x2—2=-1
y=3 Ix P g P

= x? =1 = x = %1. The required points are (—1, 23(3) and (1, -130-)



