3.3 Concept Questions

- 1. See page 267.
- 2. See page 268.
- 3. See page 271.

3.3 Increasing and Decreasing Functions and the First Derivative Test

- **1. a.** f is increasing on $(-\infty, -2)$, constant on (-2, 2), and decreasing on $(2, \infty)$.
 - **b.** f has a relative maximum value of 2 attained at all the values of x on the interval [-2, 2]; f has no relative minimum.
- **2.** a. f is increasing on $(-\infty, \infty)$.
 - **b.** f has no relative extremum.
- **3. a.** f is decreasing on $(-\infty, -1)$ and increasing on $(-1, \infty)$.
 - **b.** f has a relative minimum value of 0 attained at -1.
- **4. a.** f is decreasing on $(-\infty, -1)$ and $(1, \infty)$ and increasing on (-1, 1).
 - **b.** f has a relative minimum value of $-\frac{1}{2}$ attained at -1 and a relative maximum value of $\frac{1}{2}$ attained at 1.
- **5. a.** f is increasing on $(-\infty, -1)$ and $(-1, \infty)$.
 - **b.** *f* has no relative extremum.
- **6. a.** f is increasing on $(-\infty, -2)$ and (-2, 0) and decreasing on (0, 2) and $(2, \infty)$.
 - **b.** f has a relative maximum value of -2 attained at 0.
- 7. a. f'(x) < 0 on approximately $(-\infty, -2.5)$ and $(2.5, \infty)$. Therefore, f is decreasing on those intervals. f'(x) > 0 on approximately (-2.5, 2.5), so f is increasing on this interval.
 - **b.** f'(x) = 0 at $x \approx -2.5$ and $x \approx 2.5$, and these are critical numbers of f. Since f'(x) < 0 if x < -2.5, and f'(x) > 0 if x > -2.5, we see that f has a relative minimum at -2.5. Next, f'(x) > 0 if x < 2.5 and f'(x) < 0 if x > 2.5, and so f has a relative maximum at 2.5.
- **8. a.** f'(x) < 0 on $(-\infty, -2)$, and so f is decreasing on $(-\infty, -2)$. f'(x) > 0 on (-2, 0) and $(0, \infty)$, and so f is increasing on these intervals.
 - **b.** f'(x) = 0 at x = -2, and this is a critical number of f. Since f'(x) < 0 for x < -2 and f'(x) > 0 for x > -2, we see that x = -2 gives a relative minimum.

diagram of f' is shown.

- **a.** f is increasing on $(-\infty, -1)$ and (0, 1) and decreasing on (-1, 0) and $(1, \infty)$.
- **b.** f has relative maxima of f(-1) = f(1) = 2 and a relative minimum of f(0) = 1.
- 18. $f(x) = x^{1/3} x^{2/3} \Rightarrow f'(x) = \frac{1}{3}x^{-2/3} \frac{2}{3}x^{-1/3} = \frac{1}{3}x^{-2/3} \left(1 2x^{1/3}\right)$ is

 discontinuous at 0 and has a zero at $x = \frac{1}{8}$. The critical numbers of f are thus 0

 and $\frac{1}{8}$. The sign diagram of f' is shown. f' not defined $+ + + + + \downarrow + + 0 - \text{ sign of } f$ $0 \quad \frac{1}{8}$
 - **a.** f is increasing on $\left(-\infty, \frac{1}{8}\right)$ and decreasing on $\left(\frac{1}{8}, \infty\right)$.
 - **b.** f has a relative maximum of $f\left(\frac{1}{8}\right) = \frac{1}{4}$.
- 20. $f(x) = x^3 (x 6)^4 \Rightarrow$ $f'(x) = 3x^2 (x 6)^4 + x^3 (4) (x 6)^3 = x^2 (x 6)^3 [3 (x 6) + 4x]$ $= x^2 (7x 18) (x 6)^3$ + + 0 + + 0 - 0 + + sign of f $0 \quad \frac{18}{7} \quad 6$

is continuous everywhere and has zeros at 0, $\frac{18}{7}$, and 6, the critical numbers of f.

The sign diagram of f' is shown.

- **a.** f is increasing on $\left(-\infty, \frac{18}{7}\right)$ and $(6, \infty)$ and decreasing on $\left(\frac{18}{7}, 6\right)$.
- **b.** f has a relative maximum of $f\left(\frac{18}{7}\right) \approx 2350$ and a relative minimum of f(6) = 0.

domain of f, so f has no critical numbers. Furthermore, f'(x) is negative on its domain.

- **a.** f is decreasing on $(-\infty, 1)$ and $(1, \infty)$.
- **b.** f has no relative extremum.

24.
$$f(x) = \frac{x}{x^2 + 1} \Rightarrow$$

$$f'(x) = \frac{(x^2+1)(1)-x(2x)}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2} = \frac{(1-x)(1+x)}{(x^2+1)^2}$$
 is continuous

everywhere and has zeros at ± 1 , the critical numbers of f. The sign diagram of f' is shown.

- **a.** f is decreasing on $(-\infty, -1)$ and $(1, \infty)$ and increasing on (-1, 1).
- **b.** f has a relative minimum of $f(-1) = -\frac{1}{2}$ and a relative maximum of $f(1) = \frac{1}{2}$.

26.
$$f(x) = \frac{x^2 - 3x + 2}{x^2 + 2x + 1} = \frac{x^2 - 3x + 2}{(x+1)^2} = \frac{(x-2)(x-1)}{(x+1)^2} \Rightarrow$$

$$x^{2} + 2x + 1 \qquad (x+1)^{2} \qquad (x+1)^{2}$$

$$f'(x) = \frac{(x+1)^{2} (2x-3) - (x^{2} - 3x + 2)2 (x+1)}{(x+1)^{4}}$$

$$= \frac{(x+1) \left[(x+1) (2x-3) - 2(x^{2} - 3x + 2) \right]}{(x+1)^{4}} = \frac{5x - 7}{(x+1)^{3}}$$

f' not defined

$$+ + \downarrow ----0 + + + \text{ sign of } f'$$

 $-1 \quad 0 \quad 1 \quad \frac{7}{5} \quad 2$

is discontinuous at x = -1 and has a zero at $\frac{7}{5}$. Since -1 is not in the domain of

f, the only critical number is $\frac{7}{5}$. The sign diagram of f' is shown.

- **a.** f is decreasing on $\left(-1, \frac{7}{5}\right)$ and increasing on $\left(-\infty, -1\right)$ and $\left(\frac{7}{5}, \infty\right)$.
- **b.** f has a relative minimum of $f\left(\frac{7}{5}\right) = -\frac{1}{24}$.

28.
$$f(x) = x\sqrt{4-x} = x(4-x)^{1/2} \Rightarrow$$

$$f'(x) = (4-x)^{1/2} + x\left(\frac{1}{2}\right)(4-x)^{-1/2}(-1)$$
$$= -\frac{1}{2}(4-x)^{-1/2}[-2(4-x) + x] = -\frac{(3x-8)}{2\sqrt{4-x}}$$

is discontinuous at x=4 and has a zero at $\frac{8}{3}$, both critical numbers of f. The sign diagram of f' is shown.

- **a.** f is increasing on $\left(-\infty, \frac{8}{3}\right)$ and decreasing on $\left(\frac{8}{3}, 4\right)$.
- **b.** f has a relative maximum of $f\left(\frac{8}{3}\right) \approx 3.08$.

30.
$$f(x) = \frac{x}{\sqrt{x^2 - 1}} = \frac{x}{(x^2 - 1)^{1/2}}$$
; the domain of f is $(-\infty, -1) \cup (1, \infty)$.

$$f'(x) = \frac{d}{dx} \left[x \left(x^2 - 1 \right)^{-1/2} \right] = \left(x^2 - 1 \right)^{-1/2} + x \left(-\frac{1}{2} \right) \left(x^2 - 1 \right)^{-3/2} (2x) = \left(x^2 - 1 \right)^{-1/2} - x^2 \left(x^2 - 1 \right)^{-3/2}$$

$$= \left(x^2 - 1 \right)^{-3/2} \left[\left(x^2 - 1 \right) - x^2 \right] = -\frac{1}{\left(x^2 - 1 \right)^{3/2}} \text{ has no zero and is negative on its domain.}$$
a. f is decreasing on $(-\infty - 1)$ and $(1, \infty)$.

- **b.** f has no relative extremum.
- **32.** $f(x) = x \cos x$, $0 < x < 2\pi \Rightarrow f'(x) = 1 + \sin x$ is continuous on $(0, 2\pi)$ and

- **a.** f is increasing on $(0, 2\pi)$.
- **b.** *f* has no relative extremum.

34. $f(x) = \sin^2 2x$, $0 < x < \pi \Rightarrow$ $f'(x) = 2 (\sin 2x \cos 2x) (2) = 4 \sin 2x \cos 2x = 2 \sin 4x$ is continuous and has zeros where $\sin 4x = 0 \Rightarrow x = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ in $(0, \pi)$. The sign diagram of f' is shown

a. f is increasing on $(0, \frac{\pi}{4})$ and $(\frac{\pi}{2}, \frac{3\pi}{4})$ and decreasing on $(\frac{\pi}{4}, \frac{\pi}{2})$ and $(\frac{3\pi}{4}, \pi)$.

b. f has relative maxima of $f\left(\frac{\pi}{4}\right) = f\left(\frac{3\pi}{4}\right) = 1$ and a relative minimum of $f\left(\frac{\pi}{2}\right) = 0$.

is continuous everywhere and has zeros at $\frac{\pi}{2}$ and $\frac{3\pi}{2}$, critical numbers of f. The sign diagram of f' is shown.

a. f is increasing on $(0, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, 2\pi)$ and decreasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$.

b. f has a relative maximum of $f\left(\frac{\pi}{2}\right) = \frac{1}{2}$ and a relative minimum of $f\left(\frac{3\pi}{2}\right) = -\frac{1}{2}$.

54. $f(x) = \tan x - x \Rightarrow f'(x) = \sec^2 x - 1 > 0$ for x in $\left(0, \frac{\pi}{2}\right) \Rightarrow f$ is increasing on $\left(0, \frac{\pi}{2}\right)$. Since f(0) = 0, we have f(x) > 0 for x in $\left(0, \frac{\pi}{2}\right)$, and so $\tan x - x > 0 \Rightarrow \tan x > x$ for x in $\left(0, \frac{\pi}{2}\right)$.

56. $f(x) = -2x^2 + ax + b \Rightarrow f'(x) = -4x + a$. We require that $f'(2) = 0 \Leftrightarrow -4 \cdot 2 + a = 0 \Rightarrow a = 8$, and $f(2) = -2 \cdot 2^2 + 8 \cdot 2 + b = 4 \Rightarrow b = -4$. Thus, $f(x) = -2x^2 + 8x - 4$. Since the graph of f is a parabola that opens downward, (2, 4) is an absolute maximum.

66. True. Let h(x) = f(x) + g(x), and let x_1 and x_2 be any two numbers in I with $x_1 < x_2$. Then $f(x_1) < f(x_2)$ and $g(x_1) < g(x_2)$; that is, $f(x_2) - f(x_1) > 0$ and $g(x_2) - g(x_1) > 0$. Now $h(x_2) - h(x_1) = [f(x_2) + g(x_2)] - [f(x_1) - g(x_1)] = [f(x_2) - f(x_1)] + [g(x_2) - g(x_1)] > 0 \Rightarrow h(x_2) > h(x_1) \Rightarrow h$ is increasing on I.

67. True. Let h(x) = f(x) - g(x), and let x_1 and x_2 be any two numbers in I with $x_1 < x_2$. Then $f(x_1) < f(x_2) \Rightarrow f(x_2) - f(x_1) > 0$. Also, $g(x_2) < g(x_1) \Rightarrow g(x_1) - g(x_2) > 0$. Now $h(x_2) - h(x_1) = [f(x_2) - g(x_2)] - [f(x_1) - g(x_1)] = [f(x_2) - f(x_1)] + [g(x_1) - g(x_2)] > 0 \Rightarrow h$ is increasing on I.

68. False. Take f(x) = g(x) = x. Then f and g are increasing on $(-\infty, \infty)$, but $(fg)(x) = x^2$ is not increasing on $(-\infty, \infty)$.

69. True. Let h = f/g and let x_1 and x_2 be any two numbers in I with $x_1 < x_2$. Then $f(x_2) - f(x_1) > 0$ and $g(x_1) - g(x_2) > 0$. Now

$$h(x_{2}) - h(x_{1}) = \frac{f(x_{2})}{g(x_{2})} - \frac{f(x_{1})}{g(x_{1})} = \frac{f(x_{2})g(x_{1}) - g(x_{2})f(x_{1})}{g(x_{2})g(x_{1})}$$

$$= \frac{f(x_{2})g(x_{1}) - f(x_{1})g(x_{1}) + f(x_{1})g(x_{1}) - g(x_{2})f(x_{1})}{g(x_{2})g(x_{1})}$$

$$= \frac{[f(x_{2}) - f(x_{1})]g(x_{1}) + [g(x_{1}) - g(x_{2})]f(x_{1})}{g(x_{2})g(x_{1})} > 0 \Rightarrow h = f/g \text{ is increasing on } I.$$

70. False. Consider $f(x) = \begin{cases} x & \text{if } x < 0 \\ \frac{1}{2}x & \text{if } x \ge 0 \end{cases}$ Then f is increasing on $(-\infty, \infty)$, but f'(0) does not exist.

71. False. Consider f(x) = 2x and g(x) = x + 10 on [0, 2]. Then f'(x) = 2 > 1 = g'(x). But f(1) = 2 < 11 = g(1).

3.4 Concept Questions

- 1. See page 277.
- 2. See page 279.
- 3. See pages 283 and 284.

3.4 Concavity and Inflection Points

- 1. f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$; it has an inflection point at (0, 0).
- **2.** f is concave downward on $(-\infty, \infty)$. It has no inflection point.
- 3. f is concave upward on $(-\infty, -4)$ and $(4, \infty)$ and concave downward on (-4, 4). It has no inflection point.
- **4.** f is concave upward on $(-\infty, 0)$ and $(1, \infty)$ and concave downward on (0, 1). It has inflection points at (0, 0) and (1, -1).
- 5. f is concave downward on $(-\infty, -2)$, (-2, 2), and $(2, \infty)$. It has no inflection point.
- **6.** f is concave upward on $(0, \infty)$ and concave downward on $(-\infty, 0)$. It has an inflection point at (0, 1).
- **38.** $h(x) = 2x^3 + 3x^2 12x 2 \Rightarrow h'(x) = 6x^2 + 6x 12 = 6(x + 2)(x 1) = 0 \Rightarrow x = -2 \text{ or } 1$, the critical numbers of h. h''(x) = 12x + 6 = 6(2x + 1). We use the SDT: h''(-2) = -18 < 0, so h has a relative maximum of h(-2) = 18; and h''(1) = 18 > 0, so h has a relative minimum of h(1) = -9.
- **40.** $f(x) = 2x^4 8x + 4 \Rightarrow f'(x) = 8x^3 8 = 8(x 1)(x^2 + x + 1) = 0 \Rightarrow x = 1$, the sole critical number of $f(x) = 24x^2$, and by the SDT, f''(1) = 24 > 0 shows that $f(x) = 24x^2$ has a relative minimum of f(1) = -2.
- **42.** $h(t) = t^2 + \frac{1}{t} \Rightarrow h'(t) = 2t t^{-2} = \frac{2t^3 1}{t^2} = 0 \Rightarrow t = \frac{\sqrt[3]{4}}{2}$, the only critical number of h. $h''(t) = 2 + \frac{2}{t^3}$, and we use the SDT: $h''\left(\frac{\sqrt[3]{4}}{2}\right) > 0$, so h has a relative minimum of $h\left(\frac{\sqrt[3]{4}}{2}\right) = \frac{3\sqrt[3]{2}}{2}$.
- **44.** $f(x) = x\sqrt{4-x^2} \Rightarrow f'(x) = \frac{1}{2}x\left(4-x^2\right)^{1/2}(-2x) + \left(4-x^2\right)^{1/2} = \frac{2\left(2-x^2\right)}{\left(4-x^2\right)^{1/2}} = 0 \Rightarrow x = \pm\sqrt{2},$

the critical numbers of f. Note that f' is not defined at $x = \pm 2$, but these are the endpoints of the domain

of
$$f$$
. $f''(x) = 2 \left[\frac{\left(4 - x^2\right)^{1/2} (-2x) - \left(2 - x^2\right) \frac{1}{2} \left(4 - x^2\right)^{-1/2} (-2x)}{4 - x^2} \right] = \frac{2x \left(x^2 - 6\right)}{\left(4 - x^2\right)^{3/2}}$. We use the SDT:

 $f''\left(-\sqrt{2}\right)=4>0$, so f has a relative minimum of $f\left(-\sqrt{2}\right)=-2$; and $f''\left(\sqrt{2}\right)=-2<0$, so f has a relative maximum of $f\left(\sqrt{2}\right)=2$.

- **46.** $f(x) = \sin^2 x$, $0 < x < \frac{3\pi}{2} \Rightarrow f'(x) = 2\sin x \cos x = \sin 2x = 0 \Rightarrow x = \frac{\pi}{2}$ or π in $\left(0, \frac{3\pi}{2}\right)$, so these are critical numbers. $f''(x) = 2\cos 2x$. Using the SDT, we find that $f''\left(\frac{\pi}{2}\right) = -2 < 0$, so f has a relative maximum of $f\left(\frac{\pi}{2}\right) = 1$; and $f''(\pi) = 2 > 0$, so f has a relative minimum of $f(\pi) = 0$.
- **48.** $h(t) = \frac{1}{1 \cos t}$, $0 < t < 2\pi \Rightarrow h'(t) = \frac{d}{dt} (1 \cos t)^{-1} = -(1 \cos t)^{-2} \sin t = -\frac{\sin t}{(1 \cos t)^2} = 0 \Rightarrow t = \pi$, the only critical number in $(0, 2\pi)$. $h''(t) = \frac{-(1 \cos t)^2 \cos t + (\sin t)(2)(1 \cos t)\sin t}{(1 \cos t)^4}$ and $h''(\pi) = \frac{4}{2^4} = \frac{1}{4} > 0$, so h has a relative minimum of $h(\pi) = \frac{1}{2}$.

- 77. False. For example, $f(x) = x^{1/3}$ has an inflection point at 0, but f'(0) is not defined.
- **78.** False. Consider $f(x) = \begin{cases} x^3 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ Then f is not continuous at x = 0, and so (0, 1) cannot be an inflection point of f.
- **79.** True. If f is a polynomial of degree 3, then f'' must be a linear function which has exactly one zero. Also, the sign of f'' must change as we move across that zero.
- **80.** True. Since f is concave upward on I, f''(x) > 0 for all x in I. If h = -f, then h''(x) = -f''(x) < 0 for all x in I, and this shows that h is concave downward, so -f is concave downward.