## Calculus Exam-3 (107.06.26)

- 1. $(15 \%)$ Show that $\lim _{x, y \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ does not exists.


## - Proof:

The function is defined everywhere except at $(0,0)$. Let's approach $(0,0)$ along two different paths

$$
\begin{aligned}
& \text { along x-axis } \rightarrow \lim _{x, y \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0}=\frac{x^{2}}{x^{2}}=1 \\
& \text { along y-axis } \rightarrow \lim _{x, y \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=\lim _{y \rightarrow 0}=\frac{-y^{2}}{y^{2}}=-1
\end{aligned}
$$

Since $1 \neq-1$, we conclude that the given limit does not exist.

- 2. $(\mathbf{1 5 \%})$ Find the relative extrema of $f(x, y)=x^{3}+y^{3}-2 x y+7 x-8 y+2$
- Sol :

$$
f_{x}(x, y)=3 x^{2}-2 y+7 \quad ; \quad f_{y}(x, y)=2 y-2 x-8
$$

Solving $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$, we have

$$
\left\{\begin{array} { l } 
{ 3 x ^ { 2 } - 2 y + 7 = 0 } \\
{ 2 y - 2 x - 8 = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l } 
{ x = 1 } \\
{ y = 5 }
\end{array} \text { or } \left\{\begin{array}{l}
x=-1 / 3 \\
y=11 / 3
\end{array}\right.\right.\right.
$$

Hence the critical points are $(-1 / 3,11 / 3)$ and $(1,5)$.
Next, we use Second Derivative Test

$$
f_{x x}(x, y)=6 x \quad ; \quad f_{y y}(x, y)=2 \quad ; \quad f_{x y}(x, y)=f_{y x}(x, y)=-2
$$

then

$$
\begin{aligned}
& D=f_{x x} f_{y y}-f_{x y}^{2}=12 x-4 \\
& D(1,5)>0 \quad ; \quad D(-1 / 3,11 / 3)<0
\end{aligned}
$$

Since $f_{x x}(1,5)>0$, point $(1,5)$ gives the relative extrema minimum of $f$ with value is $f(1,5)=-15$. And point $(-1 / 3,11 / 3)$ is the saddle point because $D(-1 / 3,11 / 3)<0$.

- 3. ( $15 \%$ ) Evaluate the integral by reversing the order of integration $\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin y^{3} d y d x$
- Sol : The region of integration is shown in the figure.


Fig. 1: Figure of integration region

$$
\begin{aligned}
\Rightarrow \int_{0}^{4} \int_{\sqrt{x}}^{2} \sin y^{3} d y d x & =\int_{0}^{2} \int_{0}^{y^{2}} \sin y^{3} d x d y=\int_{0}^{2}\left[x \sin y^{3}\right]_{0}^{y^{2}} d y \\
& =\int_{0}^{2} y^{2} \sin y^{3} d y=-\left.\frac{1}{3} \cos \left(y^{3}\right)\right|_{0} ^{2}=\frac{1-\cos 8}{3}
\end{aligned}
$$

- 4. ( $15 \%$ ) Use the method of change of variables to evaluate

$$
\iint_{R}(x+y) d A
$$

where $R$ is the parallelogram with vertices $(0,0),(2,0),(3,1)$ and $(1,1)$.

Let $x=u+v$ and $y=v$ and this transformation maps region $R$ into region $S$ as shown in the figure.


Fig. 2: Figure of integration region

And the Jacobian of the transformation is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1
$$

Hence we have

$$
\begin{aligned}
\iint_{R}(x+y) d A & =\iint_{S}((u+v)+v) \cdot 1 \cdot d u d v \\
& =\int_{0}^{1} \int_{0}^{2}(u+2 v) d u d v=\int_{0}^{1}\left[\frac{1}{2} u^{2}+2 u v\right]_{0}^{2} d c \\
& =\int_{0}^{1} 2+4 v d v=2 v+\left.2 v^{2}\right|_{0} ^{1}=4
\end{aligned}
$$

- 5. ( $\mathbf{1 0 \%}$ ) Let $\omega=x^{2} y+y^{2} z^{3}$, where $x=r \cos s, y=r \sin s$ and $z=r e^{s}$ Use the method of the chain rule to find the value $\partial \omega / \partial s$ when $r=1$ and $s=0$
- Sol :

$$
\begin{aligned}
\frac{\partial \omega}{\partial s}=\frac{\partial \omega}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial \omega}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial \omega}{\partial z} \frac{\partial z}{\partial s} & =2 x y(-r \sin s)+\left(x^{2}+2 y z^{3}\right) \cdot(r \cos s)+\left(3 y^{2} z^{2}\right) \cdot r e^{s} \\
& =-2 r x y \sin s+x^{2} r \cos s+2 y z^{3} r \cos s+3 y^{2} z^{2} r e^{s}
\end{aligned}
$$

when $r=1$ and $s=0$, we have $x=1, y=0$ and $z=1$, so

$$
\frac{\partial \omega}{\partial s}=0+1+0+0=1
$$

- 6. ( $\mathbf{1 0 \%}$ ) Find the directional derivative of $f(x, y)=e^{x} \cos (2 y)$ at the point $(0, \pi / 4)$ in the direction $\vec{v}=2 \hat{i}+3 \hat{j}$.
- Sol :

$$
\nabla f(x, y)=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}=e^{x} \cos (2 y) \hat{i}-2 e^{x} \sin (2 y) \hat{j}
$$

And the unit vector of $\vec{v}$ is given by

$$
\vec{u}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{13}}(2 \hat{i}+3 \hat{j})=\frac{2}{\sqrt{13}} \hat{i}+\frac{3}{\sqrt{13}} \hat{j}
$$

Hence the directional derivative of $f$ at the point $(0, \pi / 4) \mathrm{n}$ the direction $\vec{v}$ is

$$
\left.D_{\vec{u}} f(x, y)\right|_{(0, \pi / 4)}=\left.\nabla f(x, y) \cdot \vec{u}\right|_{(0, \pi / 4)}=\frac{2}{\sqrt{13}} \cdot e^{x} \cos (2 y)-\left.\frac{6}{\sqrt{13}} e^{x} \sin (2 y)\right|_{(0, \pi / 4)}=\frac{-6}{\sqrt{13}}=\frac{-6 \sqrt{13}}{13}
$$

- 7. ( $10 \%$ ) Find equations of the tangent plane and normal line to the graph of the function $f$ define by $f(x, y)=4 x^{2}+y^{2}+2$ at the point where $x=1$ and $y=1$
- Sol :

The surface is a paraboloid. The equation can be written as the form

$$
z=f(x, y)=4 x^{2}+y^{2}+2 \Rightarrow F(x, y, z)=z-f(x, y)=0
$$

where

$$
F(x, y, z)=z-4 x^{2}-y^{2}-2
$$

Then

$$
F_{x}=\frac{\partial F}{\partial x}=-8 x \quad ; \quad F_{y}=\frac{\partial F}{\partial y}=-2 y \quad ; \quad F_{z}=\frac{\partial F}{\partial z}=1
$$

If $x=1, y=1$ then $z=f(x, y)=7$ on the paraboloid.
At point $(1,1,7)$ we have

$$
F_{x}=-8 \quad ; \quad F_{y}=-2 \quad ; \quad F_{z}=1
$$

Hence we know the normal vector of the tangent plane at $(1,1,7)$ is $(-8,-2,1)$.
Then we have the equation of the plane

$$
-8(x-1)-2(y-1)+(z-7)=0 \Rightarrow 8 x+2 y-z=3
$$

And the equation of the normal line is given by

$$
\begin{aligned}
& x=1-8 t ; \quad y=1-2 t ; \quad z=1+t \quad ; \quad t \neq 0, t \in \mathbb{R} \\
& \text { or } \quad \frac{x-1}{-8}=\frac{y-1}{-2}=\frac{z-7}{1}
\end{aligned}
$$

- 8. ( $10 \%$ ) Find the maximum and minimum values of the function $f(x, y)=x^{2}-2 y$ subject to $x^{2}+y^{2}=9$.
- Sol: Constraint equation is $g(x, y)=x^{2}+y^{2}=9$

$$
\nabla f=2 x \hat{i}-2 \hat{j} \quad ; \quad \nabla g=2 x \hat{i}+2 y \hat{j}
$$

The equation $\nabla f=\lambda \nabla g$ becomes

$$
2 x \hat{i}-2 \hat{j}=2 x \lambda \hat{i}+2 \lambda y \hat{j}
$$

so we have

$$
\begin{aligned}
& 2 x=2 x \lambda \quad-----(1) \\
& -2=2 \lambda y \\
& x^{2}+y^{2}=9
\end{aligned}
$$

From (1) we have $x=0$ or $\lambda=1$.
If $x=0$ then $y= \pm 3$, so we have $f(x, y)=-6$ or $f(x, y)=6$.
If $\lambda=1$ then $y=-1, x= \pm 2 \sqrt{2}$, so we have $f(x, y)=10$.
Hence we know that
the maximum value of $f$ is 10
the minimum value of $f$ is -6

