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¥' = 2. the slope of the required tangent line. An equationisy —0=2(x —1)ory = 2x — 2.
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6. 2

18. f(x) = |x + 1| — |x| is not one-to-one. The

horizontal line ¥ = 1 cuts the graph of f at infinitely
many points.
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21. By inspection f (0) = —1. so f‘l (—1) = 0.

24. By inspection f(0) = 2.s0 f~1(2) = 0.
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§7. Observe that f(2) = / ——— = 0, showing that (2, 0) lies on the graph of f. Next,
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observe that " (x) = — > = = (by the FTC, Part 1). Therefore,
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60. a. ¢’ (x) = ————— = [ (g (x) . s0 by the Chain Rule.
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b. f isincreasing on (a,b) = f’ = 0on (a.b). Also. the graph of f is concave upward on (a,b) = " > 0on (a. b).
Using the result of part a. we see that g < 0 on (a, b). and so the graph of g is concave downward on (a, b).



