聯微作業解答 (3.2, 3.3)

3.2

• Verify that the function satisfies the hypotheses of Rolle's Theorem on the given interval, and find all values of c that satisfy the conclusion of the theorem.

5.
$$f(x) = x\sqrt{1-x^2}$$
; $[-1,1]$

Sol.
$$f'(x) = (1 - x^2)^{\frac{1}{2}} + x(\frac{1}{2}(1 - x^2)^{-\frac{1}{2}})(-2x)$$

$$= (1 - x^2)^{-\frac{1}{2}}((1 - x^2) - x^2)$$

$$= \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$

f is continuous on [-1,1] and differentiable on (-1,1), f(-1)=0, and f(1)=0

by Rolle's Theorem, there exists a number c in (-1,1) such that $f'(c) = \frac{1-2c^2}{\sqrt{1-c^2}} = 0$.

In this case, $1-2c^2=0 \Rightarrow c=\pm \frac{\sqrt{2}}{2}$

ullet Verify that the function satisfies the hypotheses of Mean Value Theorem on the given interval, and find all values of c that satisfy the conclusion of the theorem.

10.
$$f(x) = x^3 - 2x$$
; $[-1, 2]$

Sol.
$$f'(x) = 3x^2 - 4x$$

f is continuous on [-1,2] and differentiable on (-1,2),

by Mean Value Theorem, there exists a number c in (-1,2)

such that

$$\frac{f(2) - f(-1)}{2 - (-1)} = f'(c) \Rightarrow \frac{(8 - 8) - (-1 - 2)}{3} = 3c^2 - 4c$$
$$\Rightarrow 3c^2 - 4c - 1 = 0 \Rightarrow c = \frac{2 \pm \sqrt{7}}{3}.$$

- 25. Prove that $f(x) = x^5 + 6x + 4$ has exactly one zero in $(-\infty, \infty)$.
 - pf. Since f(x) is polynomial function, and so it is continuous and differentiable on $(-\infty, \infty)$.

Consider f(-1) = -3 < 0 and f(0) = 4 > 0, by Intermediate Value Theorem, there exists at least one number r_1 on (-1,0) such that $f(r_1) = 0$

Suppose f has another zero r_2 on $(-\infty, \infty)$, and $r_1 \neq r_2$.

Then $f(r_1) = f(r_2) = 0$, by Rolle's Theorem, there exists a number c in (r_1, r_2) such that f'(c) = 0. But $f'(x) = 5x^4 + 6 \ge 6$.

So no c exists. There is a contradiction.

Thus r_2 cannot exist. Hence f has exactly one zero.

- 26. Prove that the equation $x^7 + 6x5 + 2x 6 = 0$ has exactly one real root.
 - pf. Let $f(x) = x^7 + 6x^5 + 2x 6 = 0$. Since f is polynomial function, and so f is continuous and differential on $(-\infty, \infty)$.

Consider f(-1) = -15 < 0 and f(1) = 3 > 0, by Intermediate Value Theorem, there exists a number r_1 on (-1,1) such that $f(r_1) = 0$, and this show that f has at least one zero in (-1,1).

Suppose f has another zero r_2 on $(-\infty, \infty)$, and $r_1 \neq r_2$.

Then $f(r_1) = f(r_2) = 0$, by Rolle's Theorem, there exists a number c in (r_1, r_2) such that f'(c) = 0. But $f'(c) = 7c^6 + 30c^4 + 2 \ge 2$.

So no c exists. There is a contradiction.

Thus r_2 cannot exists. Hence f has exactly one zero, so the given equation has exactly one root.

34. Suppose that f and g are continuous on an interval [a,b] and differentiable on the interval (a,b). Furthermore, suppose that f(a) = g(a) and f'(x) < g'(x) for a < x < b. Prove that f(x) < g(x) for a<x
b.

Hint: Apply the Mean Value Theorem to the function h = f - g.

pf. Let h = f - g. h is continuous on [a, b] and differentiable on (a, b). h(a) = (f - g)(a) = f(a) - g(a) = 0. If a < x < b, by Mean Value Theorem, $\frac{h(x) - h(a)}{x - a} = h'(c)$, $c \in (a, x)$. Then h'(x) = f'(x) - g'(x), and we have $\frac{h(x) - 0}{x - a} = f'(c) - g'(c) < 0$. Since f'(x) < g'(x) for all $x \in (a, b)$. Multiplying both sides by x - a. h(x) = f'(c) - g'(c) < 0 since $x - a > 0 \Rightarrow f(x) < g(x)$ for all $x \in (a, b)$.

- \bullet (a) Find the intervals on which f is increasing or decreasing.
 - (b) Find the relative maxima and relative minima of f.

10.
$$f(x) = -x^2 + 4x + 2$$

Sol.
$$f'(x) = -2x + 4 = -2(x - 2)$$
 is defined everywhere.

$$f'(x) = 0 \Rightarrow x = 2$$
. The critical number of f is 2.

if
$$x > 2$$
, then $f'(x) < 0$

if
$$x < 2$$
, then $f'(x) > 0$

- (a) f is increasing on $(-\infty, 2)$, and decreasing on $(2, \infty)$.
- (b) f has relative maximum at x = 2 for f(2) = 6

18.
$$f(x) = x^{\frac{1}{3}} - x^{\frac{2}{3}}$$

Sol.
$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}} - \frac{2}{3}x^{\frac{2}{3}}$$
 is not defined at $x = 0$.

$$f'(x) = 0 \Rightarrow x = \frac{1}{8}$$
. The critical number of f are 0 and 8.

if
$$x < 0$$
, then $f'(x) > 0$

if
$$0 < x < \frac{1}{8}$$
, then $f'(x) > 0$

if
$$x > \frac{1}{8}$$
, then $f'(x) < 0$

- (a) f is increasing on $(-\infty, \frac{1}{8})$, and decreasing on $(\frac{1}{8}, \infty)$.
- (b) f has relative maximum at $x = \frac{1}{8}$ for $f(\frac{1}{8}) = \frac{1}{4}$.

25.
$$f(x) = \frac{2x-3}{x^2-4}$$

Sol.
$$f'(x) = \frac{2(x^2 - 4) - (2x - 3)(2x)}{(x^2 - 4)^2} = \frac{-2(x^2 - 3x + 4)}{(x + 2)^2(x - 2)^2}$$
 is not defined

at $x = \pm 2$, and f'(x) has no zero. Since $x = \pm 2$ are not in domain

of f, there is no critical number of f, and f'(x) < 0 on its domain.

- (a) f is decreasing on $(-\infty, -2)$, (-2, 2), and $(2, \infty)$.
- (b) f has no relative extremum.

35.
$$f(x) = x \sin x + \cos x$$
, $0 < x < 2\pi$.

Sol.
$$f'(x) = \sin x + x \cos x - \sin x = x \cos x$$
 is defined everywhere.

$$f'(x) = 0 \Rightarrow x = \frac{\pi}{2}$$
 or $x = \frac{3\pi}{2}$. The critical number of f are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

if
$$0 < x < \frac{\pi}{2}$$
, then $f'(x) > 0$

if
$$\frac{\pi}{2} < x < \frac{3\pi}{2}$$
, then $f'(x) < 0$

if
$$\frac{3\pi}{2} < x < 2\pi$$
, then $f'(x) > 0$

- (a) f is increasing on $(0, \frac{\pi}{2})$, $(\frac{3\pi}{2}, 2\pi)$, and decreasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$.
- (b) f has relative maximum at $x = \frac{\pi}{2}$ for $f(\frac{\pi}{2}) = \frac{\pi}{2}$ and f has relative minimum at $x = \frac{3\pi}{2}$ for $f(\frac{3\pi}{2}) = \frac{-3\pi}{2}$.

36.
$$f(x) = \frac{\sin x}{1 + \sin^2 x}$$
, $0 < x < 2\pi$.

Sol.
$$f'(x) = \frac{\cos x(1+\sin^2 x) - \sin x(2\sin x \cos x)}{(1+\sin^2 x)^2} = \frac{\cos^3 x}{(1+\sin^2 x)^2}$$
 is defined everywhere.

 $f'(x) = 0 \Rightarrow x = \frac{\pi}{2}$ or $x = \frac{3\pi}{2}$. The critical number of f are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$.

if
$$0 < x < \frac{\pi}{2}$$
, then $f'(x) > 0$

if
$$\frac{\pi}{2} < x < \frac{3\pi}{2}$$
, then $f'(x) < 0$

if
$$\frac{3\pi}{2} < x < 2\pi$$
, then $f'(x) > 0$

- (a) f is increasing on $(0, \frac{\pi}{2}), (\frac{3\pi}{2}, 2\pi)$, and decreasing on $(\frac{\pi}{2}, \frac{3\pi}{2})$.
- (b) f has relative maximum at $x = \frac{\pi}{2}$ for $f(\frac{\pi}{2}) = \frac{1}{2}$ and f has relative minimum at $x = \frac{3\pi}{2}$ for $f(\frac{3\pi}{2}) = \frac{-1}{2}$.