7. $F(x, y)=x^{4}+2 x^{2} y^{2}+y^{4}-9 x^{2}+9 y^{2} \Rightarrow$ $\boldsymbol{\nabla} F(\sqrt{5},-1)=\left[\left(4 x^{3}+4 x y^{2}-18 x\right) \mathbf{i}+\left(4 x^{2} y+4 y^{3}+18 y\right)\right] \mathbf{j}_{(\sqrt{5},-1)}=6 \sqrt{5} \mathbf{i}-42 \mathbf{j}$ is normal to the level curve $F(x, y)=x^{4}+2 x^{2} y^{2}+y^{4}-9 x^{2}+9 y^{2}=0$ at $(\sqrt{5},-1)$, so the slope of the required normal line is $m=-\frac{42}{6 \sqrt{5}}=-\frac{7 \sqrt{5}}{5}$ and an equation of the normal line is $y-(-1)=-\frac{7 \sqrt{5}}{5}(x-\sqrt{5}) \Leftrightarrow y=-\frac{7 \sqrt{5}}{5} x+6$. The slope of the required tangent line is $m=-\frac{1}{-\frac{7 \sqrt{3}}{3}}=\frac{\sqrt{5}}{T}$, and an equation of the tangent line is $y-(-1)=\frac{\sqrt{5}}{T}(x-\sqrt{5}) \Leftrightarrow$ $y=\frac{\sqrt{5}}{7} x-\frac{12}{7}$.
8. $F(x, y, z)=x y+y z+x z-11=0 \Rightarrow \nabla F(1,2,3)=[(y+z) \mathbf{i}+(x+z) \mathbf{j}+(x+y) \mathbf{k}]_{(1,2,3)}=5 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$, so an equation of the tangent plane at $(1,2,3)$ is $5(x-1)+4(y-2)+3(z-3)=0 \Leftrightarrow 5 x+4 y+3 z=22$. Equations of the normal line passing through $(1,2,3)$ are $\frac{x-1}{5}=\frac{y-2}{4}=\frac{z-3}{3}$.
9. $F(x, y, z)=x e^{y}-z=0 \Rightarrow \nabla F(2,0,2)=\left.\left(e^{y} \mathbf{i}+x e^{y} \mathbf{j}-\mathbf{k}\right)\right|_{(2,0,2)}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$, so an equation of the tangent plane at $(2,0,2)$ is $(x-2)+2 y-(z-2)=0 \Leftrightarrow x+2 y-z=0$. Equations of the normal line passing through $(2,0,2)$ are $x-2=\frac{y}{2}=\frac{z-2}{-1}$.
10. $F(x, y, z)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1 \Rightarrow \nabla \nabla\left(x_{0}, y_{0}, z_{0}\right)=\left.\left(\frac{2 x}{a^{2}} \mathbf{i}+\frac{2 y}{b^{2}} \mathbf{j}+\frac{2 z}{c^{2}} \mathbf{k}\right)\right|_{\left(x_{0}, y_{0}, z_{0}\right)}=\frac{2 x_{0}}{a^{2}} \mathbf{i}+\frac{2 y_{0}}{b^{2}} \mathbf{j}+\frac{2 z_{0}}{c^{2}} \mathbf{k}$, so an equation of the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ is $\frac{2 x_{0}}{a^{2}}\left(x-x_{0}\right)+\frac{2 y_{0}}{b^{2}}\left(y-y_{0}\right)+\frac{2 z_{0}}{c^{2}}\left(z-z_{0}\right)=0 \Leftrightarrow$ $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}+\frac{z_{0} z}{c^{2}}-\left(\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}+\frac{z_{0}^{2}}{c^{2}}\right)=0$. But $\left(x_{0}, y_{0}, z_{0}\right)$ lies on the ellipsoid, so the expression in parentheses is equal to 1 and we have $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}+\frac{z z_{0}}{c^{2}}=1$, as was to be shown.
11.

$\left.\begin{array}{l}f_{x}(x, y)=\frac{\partial}{\partial x}\left(x^{2}+2 y^{2}+x^{2} y+3\right)=2 x+2 x y=0 \\ f_{y}(x, y)=\frac{\partial}{\partial y}\left(x^{2}+2 y^{2}+x^{2} y+3\right)=4 y+x^{2}=0\end{array}\right\} \quad$ The first equation gives $x=0$ or $y=-1$. Substituting $x=0$ into the second equation gives $y=0$; substituting $y=-1$ into the second equation gives $x= \pm 2$. Thus, f has critical points $(0,0),(-2,-1)$, and $(2,-1)$. Next, $D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)=(2+2 y)(4)-(2 x)^{2}=-4 x^{2}+8 y+8$.
At $(0,0): D(0,0)=8>0$ and $f_{x x}(0,0)=2>0$, so $(0,0)$ gives a relative minimum of f with value $f(0,0)=3$.
At $(-2,-1): D(-2,-1)=-4(-2)^{2}+8(-1)+8=-16<0$, so $(-2,-1,5)$ is a saddle point of f.
At $(2,-1): D(2,-1)=-4(2)^{2}+8(-1)+8=-16<0$, so $(2,-1,5)$ is also a saddle point of f.
13.
$\left.\begin{array}{l}f_{x}(x, y)=\frac{\partial}{\partial x}\left(x^{2}-6 x-x \sqrt{y}+y\right)=2 x-6-\sqrt{y}=0 \\ f_{y}(x, y)=\frac{\partial}{\partial y}\left(x^{2}-6 x-x y^{1 / 2}+y\right)=-\frac{x}{2 \sqrt{y}}+1=0\end{array}\right\}$
From the first equation, we see that
$\sqrt{y}=2 x-6$. Substituting this into the second equation gives $-x+2(2 x-6)=0 \Rightarrow x=4$. Substituting this into the first equation gives $8-6=\sqrt{y} \Rightarrow y=4$, so the sole critical point of f is $(4,4)$. Next,
$D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)=2\left(\frac{x}{4 y^{3 / 2}}\right)-\left(-\frac{1}{2 \sqrt{y}}\right)^{2}=\frac{x}{2 y^{3 / 2}}-\frac{1}{4 y}$. Since
$D(4,4)=\frac{4}{2(8)}-\frac{1}{4(4)}=\frac{3}{16}>0$ and $f_{x x}(4,4)=2>0$, the point $(4,4)$ gives a relative minimum of f with value $f(4,4)=-12$.
34.
$\left.\begin{array}{l}f_{x}(x, y)=\frac{\partial}{\partial x}\left(x^{2}+x y+y^{2}\right)=2 x+y=0 \\ f_{y}(x, y)=\frac{\partial}{\partial y}\left(x^{2}+x y+y^{2}\right)=x+2 y=0\end{array}\right\} \Rightarrow x=0$ and $y=0$,
so $(0,0)$ is the only critical point of f in D.
On $\ell_{1}, x=2$ and $y=y$, so $g(y)=f(2, y)=4+2 y+y^{2}$ for
$-1 \leq y \leq 1 \cdot g^{\prime}(y)=2+2 y=0 \Rightarrow y=-1$, so since $g(-1)=3$ and $g(1)=7$, we see that f has an absolute minimum value of 3 and an

absolute maximum value of 7 on ℓ_{1}.
On $\ell 2, x=x$ and $y=1$, so $h(x)=f(x, 1)=x^{2}+x+1$ for $-2 \leq x \leq 2 . h^{\prime}(x)=2 x+1=0 \Rightarrow x=-\frac{1}{2}$, so $-\frac{1}{2}$ is a critical number of h. Since $h(-2)=3, h\left(-\frac{1}{2}\right)=\frac{3}{4}$, and $h(2)=7$, we see that f has an absolute minimum value of $\frac{3}{4}$ and an absolute maximum value of 7 on ℓ_{2}.
On $\ell_{3}, x=-2$ and $y=y$, so $s(y)=f(-2, y)=4-2 y+y^{2}$ for $-1 \leq y \leq 1 . s^{\prime}(y)=-2+2 y=0 \Rightarrow y=1$, an endpoint. Since $s(-1)=7$ and $s(1)=3$, we see that f has an absolute minimum value of 3 and an absolute maximum value of 7 on ℓ_{3}.
On $\ell_{4}, x=x$ and $y=-1$, so $t(x)=f(x,-1)=x^{2}-x+1$ for $-2 \leq x \leq 2 . g^{\prime}(x)=2 x-1=0 \Rightarrow x=\frac{1}{2}$, so t has critical number $\frac{1}{2}$. Since $g(-2)=7, g\left(\frac{1}{2}\right)=\frac{3}{4}$, and $g(2)=3$, we see that f has an absolute minimum value of $\frac{3}{4}$ and an absolute maximum value of 7 on ℓ_{4}.
The extreme values of f on D and its boundaries are summarized below.

	Critical point	ℓ_{1}		ℓ_{2}		ℓ_{3}		ℓ_{4}	
(x, y)	$(0,0)$	$(2,-1)$	$(2,1)$	$\left(-\frac{1}{2}, 1\right)$	$(2,1)$	$(-2,-1)$	$(-2,1)$	$\left(\frac{1}{2},-1\right)$	$(-2,-1)$
Extreme value	0	3	7	$\frac{3}{4}$	7	7	3	$\frac{3}{4}$	7

We see that f has an absolute minimum value of 0 and an absolute maximum value of 7 on D.
37. $\left.\begin{array}{rl}f_{x}(x, y) & =\frac{\partial}{\partial x}\left(x y-x^{2}\right) \\ f_{y}(x, y) & =y-2 x=0 \\ \partial y \\ \left(x y-x^{2}\right) & =x=0\end{array}\right\} \Rightarrow x=0, y=0$, so f has
no critical point in the interior of D.
On $C_{1}, y=x^{2}$, so $g(x)=f\left(x, x^{2}\right)=x^{3}-x^{2}$ for $-2 \leq x \leq 2$.
$g^{\prime}(x)=3 x^{2}-2 x=x(3 x-2)=0 \Rightarrow x=0$ or $x=\frac{2}{3}$, so 0 and $\frac{2}{3}$ are critical numbers of g on $(-2,2)$.

From the table, we see that f has an absolute minimum value of -12 and an absolute maximum value of 4 on C_{1}.

On $C_{2}, x=x$ and $y=4$, so $h(x)=f(x, 4)=4 x-x^{2}$ for $-2 \leq x \leq 2$.

$h^{\prime}(x)=4-2 x=0 \Rightarrow x=2$, an endpoint. We find $h(-2)=-12$ and
$g(2)=4$, so f has an absolute minimum value of -12 and an absolute
maximum value of 4 on C_{2}.
We conclude that f has an absolute minimum value of -12 and an absolute maximum value of 4 on D.

