13.6: 3, 9, 17, 31
5. $\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=\left(6 x^{2} y^{2} z\right)(1)+\left(4 x^{3} y z\right)(-\sin t)+\left(2 x^{3} y^{2}\right)(\sin t+t \cos t)$

$$
=2 x^{2} y[3 y z-2 x z \sin t+x y(\sin t+t \cos t)]
$$

13. $\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial u}=\left(\tan ^{-1} y z\right)\left(\frac{1}{2 \sqrt{u}}\right)+\frac{x z}{1+(y z)^{2}}(0)+\frac{x y}{1+(y z)^{2}}(-v \sin u)$

$$
=\frac{\left(\tan ^{-1} y z\right) \sqrt{u}}{2 u}-\frac{x y v \sin u}{1+y^{2} z^{2}} \text { and }
$$

$$
\frac{\partial w}{\partial v}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial v}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial v}=\left(\tan ^{-1} y z\right)(0)+\frac{x z}{1+y^{2} z^{2}}\left(-2 e^{-2 v}\right)+\frac{x y}{1+y^{2} z^{2}}(\cos u)=\frac{x\left(y \cos u-2 z e^{-2 v}\right)}{1+y^{2} z^{2}} .
$$

25. $\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}=\frac{2 x y}{z^{2}} e^{s t}+\frac{x^{2}}{z^{2}} s t e^{r t}+\left(-\frac{2 x^{2} y}{z^{3}}\right) s t e^{r s t}$ and

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial t}=\frac{2 x y}{z^{2}} r s e^{s t}+\frac{x^{2}}{z^{2}} r s e^{r t}+\left(-\frac{2 x^{2} y}{z^{3}}\right) r s e^{r s t} . \text { If } r=1, s=2 \text {, and } t=0, \text { then } x=1,
$$

$y=2$, and $z=1$, so $\frac{\partial w}{\partial r}=4+0+(-4)(0)=4$ and $\frac{\partial w}{\partial t}=4(2)+1(2)-4(2)=2$.
33. Here $F(x, y, z)=x^{2}+x y-x^{2} z+y z^{2}=0$, so $\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x+y-2 x z}{-x^{2}+2 y z}=\frac{2 x+y-2 x z}{x^{2}-2 y z}$ and $\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x+z^{2}}{-x^{2}+2 y z}=\frac{x+z^{2}}{x^{2}-2 y z}$.
3. Here $\mathbf{u}=\cos \frac{\pi}{2} \mathbf{i}+\sin \frac{\pi}{2} \mathbf{j}=\mathbf{j}$, so $D_{\mathbf{u}} f(3,0)=\frac{\partial f}{\partial y}(3,0)=\left.(x+1) e^{y}\right|_{(3,0)}=4$.
9. $f_{x}(x, y, z)=\frac{\partial}{\partial x}\left(x e^{y z}\right)=e^{y z}, f_{y}(x, y, z)=x z e^{y z}$, and $f_{z}(x, y, z)=x y e^{y z}$, so $\boldsymbol{\nabla} f(1,0,2)=\left.\left(e^{y z} \mathbf{i}+x z e^{y z} \mathbf{j}+x y e^{y z} \mathbf{k}\right)\right|_{(1,0,2)}=\mathbf{i}+2 \mathbf{j}$.
17. Here $\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{-2 \mathbf{i}+3 \mathbf{j}}{\sqrt{(-2)^{2}+3^{2}}}=-\frac{2 \sqrt{13}}{13} \mathbf{i}+\frac{3 \sqrt{13}}{13} \mathbf{j}, f_{x}(x, y)=\sin ^{2} y$, and $f_{y}(x, y)=2 x \sin y \cos y=x \sin 2 y$, so

$$
D_{\mathbf{u}} f\left(-1, \frac{\pi}{4}\right)=f_{x}\left(-1, \frac{\pi}{4}\right)\left(-\frac{2 \sqrt{13}}{13}\right)+f_{y}\left(-1, \frac{\pi}{4}\right)\left(\frac{3 \sqrt{13}}{13}\right)=\frac{1}{2}\left(-\frac{2 \sqrt{13}}{13}\right)+(-1)\left(\frac{3 \sqrt{13}}{13}\right)=-\frac{4 \sqrt{13}}{13} .
$$

31. Here $\mathbf{u}=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{2 \mathbf{i}+\frac{\pi}{4} \mathbf{j}-\frac{\pi}{6} \mathbf{k}}{\sqrt{2^{2}+\left(\frac{\pi}{4}\right)^{2}+\left(\frac{\pi}{6}\right)^{2}}}=\frac{12}{\sqrt{576+13 \pi^{2}}}\left(2 \mathbf{i}+\frac{\pi}{4} \mathbf{j}-\frac{\pi}{6} \mathbf{k}\right), f_{x}(x, y, z)=\sin (2 y+3 z)$,

$$
f_{y}(x, y, z)=2 x \cos (2 y+3 z) \text {, and } f_{z}(x, y, z)=3 x \cos (2 y+3 z) \text {, so }
$$

$D_{\mathbf{u}} f\left(1, \frac{\pi}{4},-\frac{\pi}{12}\right)=f_{x}\left(1, \frac{\pi}{4},-\frac{\pi}{12}\right) \cdot \frac{24}{\sqrt{576+13 \pi^{2}}}+f_{y}\left(1, \frac{\pi}{4},-\frac{\pi}{12}\right) \cdot \frac{3 \pi}{\sqrt{576+13 \pi^{2}}}$

$$
\begin{array}{r}
+f_{z}\left(1, \frac{\pi}{4},-\frac{\pi}{12}\right) \cdot\left(-\frac{2 \pi}{\sqrt{576+13 \pi^{2}}}\right) \\
=\frac{\sqrt{2}}{2}\left(\frac{24}{\sqrt{576+13 \pi^{2}}}\right)+\sqrt{2}\left(\frac{3 \pi}{\sqrt{576+13 \pi^{2}}}\right)+\frac{3 \sqrt{2}}{2}\left(-\frac{2 \pi}{\sqrt{576+13 \pi^{2}}}\right)=\frac{12 \sqrt{2}}{\sqrt{13 \pi^{2}+576}}
\end{array}
$$

