- 1. (10 %) The point $(0, 2\sqrt{3}, -2)$ is given in rectangular coordinates. Find the spherical coordinates for this point.
- 2. (10 %) Reparametrize the helix $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ with respect to arc length measured from (1,0,0) in the direction of increasing t.
- 3. (10 %) If $f(x,y) = 1 + 2x\sqrt{y}$,
 - (a) find the gradient of f and
 - (b) find the directional derivative of f at (3,4) in the direction of $\mathbf{v} = <4, -3>.$
- 4. (10%) Find the equation of the tangent plane at the point (1,0,0)to the surface $z + 1 = xe^y \cos z$.
- 5. (15 %) If

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

- (a) show that $f_x(0,0)$ exists and
- (b) show that f is not differentiable at (0,0).
- 6. (15 %) If z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$,

 - (a) find that $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial \theta}$, and (b) find that $\frac{\partial^2 z}{\partial r^2}$, $\frac{\partial^2 z}{\partial \theta^2}$, and
 - (c) show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r}.$$

- 7. (15 %) Find the local maximum and minimum values and saddle points of $f(x,y) = x^4 + y^4 - 4xy + 1$.
- 8. (15 %) Find the extreme values of the function $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.