Num. Name.
(1)(15\%) Find the absolute maximum and absolute minimum values of the function $f(x)=2 x^{4}-\frac{8}{3} x^{3}-8 x^{2}+12$ on $[-2,3]$
Answer:
f has an absolute maximum value \qquad at \qquad and
f has an absolute minimum value \qquad at \qquad
(2)(15\%)Use the Mean Value Theorem to prove that

$$
|\sin a-\sin b| \leq|a-b|
$$

for all real numbers a and b
(3) (15%) (a)Find the intervals on which $f(x)=-x^{4}+2 x^{2}+1$ is increasing or decreasing, and (b) use the First Derivative Test to find the relative maxima and relative minima of f.
Answer:
(a) f is increasing on \qquad and f is decreasing on \qquad
(b) f has a relative maximum value \qquad at \qquad and f has a relative minimum value \qquad at \qquad
(4) (15%) (a)Find the intervals on which $f(x)=2 x^{3}-3 x^{2}-12 x+12$ is concave up or down, and (b) find the point of inflection, and (c) use the Second Derivative Test to find the relative maxima and relative minima of f.
Answer:
(a) f is concave up on \qquad and f is concave down on \qquad
(b)point of inflection is \qquad
(c) f has a relative maximum value \qquad at \qquad and f has a relative minimum value \qquad at \qquad
(5)(10\%)Find the vertical asymptotes of the graph of $f(x)=\frac{x}{x^{2}-x-2}$
(6)(10\%)Find the horizontal asymptotes of the graph of $f(x)=\frac{3 x}{\sqrt{x^{2}+1}}$
(7)(10\%)Find the indefinite integral $\int \frac{d x}{1-\sin x}$
(8)(10\%)Find the indefinite integral $\int(x+1) \sqrt{2 x-1} d x$

